
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

CREATING A FLASHY MONITORING APPLICATION PAGE 26

PLUS...
JDBC 4.0 Designing JUnit Test Cases

RETAILERS PLEASE DISPLAY
UNTIL JANUARY 31, 2007

 JDJ.SYS-CON.COM VOL.11 ISSUE:11

No. 1 i-Technology Magazine in the World

JDJ.SYS-CON.COM VOL.11 ISSUE:11

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM

Real SOA

SEE PAGE 49

XSLT

Adding pervasive computing
support to existing applications

�������������������������������������
������������������������

���

��

��

�������������

���

��

��

���

��

���
��

���������������������������
���

����������������������
����������

������������������
���������������������

���������������

������������������
����������������

��������
�������������

������������������
�����������

������

���������������
��������������

��������

������
�������

�������������������

� �� �
� �� �

3November 2006JDJ.SYS-CON.com

he question that forms the title
of this editorial was recently
asked by a young observer of the
Web 2.0 scene, Skinner Layne.

Possessed of a supple mind suffused
with historical sense and insight,
he contends that the key thing to
determine about Web 2.0 is whether
it is best characterized as a revolution
in Web development or as a rebellion
against Web 1.0 – two quite different
things.
 Layne’s chosen analogy is with
the French versus the American
revolution:

“Web 2.0 can take two distinct direc-
tions … [it] can be the French Revo-
lution of Technology or it can be the
American Revolution of Technology.”

 His sense appears to be that Web
2.0 is more of a rebellion, a correc-
tive to Web 1.0, which he calls “a
destination-driven experience, one
created not by users, but for users,
and with little input or insight from
them at all.”
 There is a reason that this interpre-
tation is bad news for Web 2.0 fanboys.
As Layne puts it:

“The problem with
successful rebellions is
that rebels rarely know
how to govern or else
they take up the mantle
of those against whom
they rebelled, and like
Orwell’s pigs in Animal
Farm, they begin to
sleep in the old rulers’
beds.”

 Indeed Layne’s not altogether
comfortable with the version number
approach in and of itself:

“Web 2.0, Search 2.0, Life 2.0, World 2.0.
The metaphor of software versions to
describe technological and social phe-
nomena once upon a time was clever.
But, as with all clever sayings, it became
overused and is now cliché. The draw
toward terms like ‘Web 2.0’ is of course
that it makes a strong implication that
what it represents is a ‘next generation’
of something good enough to have got-
ten a second run. The trouble with such
monikers, though, is their post-modern
tendency to merely be what came after.”

 Having introduced the notion of
post-modernity into his essay, Layne
then drops another word-bomb by re-
ferring to “the advent of the Post-Mod-
ern Internet embodied in the Web 2.0
movement.” Thus begging the ques-
tion: Is “Web 2.0” the Advent of the
Post-Modern Internet? [My emphasis.]
 There’s 10 times more disagreement
about what “post-modern” connotes
than about what “Web 2.0” means sim-
ply because the former term has been
around a lot longer than the latter. But

even so, it is intriguing
to contemplate that a
phenomenon as young
as the Internet might
have already moved
into its second era.
 Are we entering a
new historical period
of the Internet and
the Web, or merely an
extension of the exist-
ing one?

From the Editor

Is This the Advent of
the Post-Modern Internet?

 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

T

�������������������������������������
������������������������

���

��

��

�������������

���

��

��

���

��

���
��

���������������������������
���

����������������������
����������

������������������
���������������������

���������������

������������������
����������������

��������
�������������

������������������
�����������

������

���������������
��������������

��������

������
�������

�������������������

� �� �
� �� �

There’s 10 times more disagreement about what
‘post-modern’ connotes than about what

‘Web 2.0’ means simply because the former term
has been around a lot longer than the latter”

“

XSLT

5November 2006JDJ.SYS-CON.com

NOVEMBER 2006 VOLUME:11 ISSUE:11

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offices. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

Features

FROM THE EDITOR

Is This the Advent of
the Post-Modern Internet?
by Jeremy Geelan.................................3

ENTERPRISE VIEWPOINT

Spring + Hibernate EJB3,
POJO + JDBC?
by Yakov Fain.................................6

INTEGRATION

Jumpstart SOA
Pragmatic approaches to integrating .NET and
Java components within WebSphere portal
 by Laurence Moroney.................................12

YAKOV’S GAS STATION

Creating a Flashy
Monitoring Application
Building an application in Flex using declarative
GUI language MXML mixed with ActionScript 3
and XML
by Yakov Fain.............................26

TESTING

Designing JUnit Test Cases
Effective functional testing
by Nada daVeiga..............................34

TRENDS

Patterns in Action
Pattern-driven software engineering
by Jochen Krebs..............................42

DESKTOP JAVA VIEWPOINT

The Two-Dimensional Legacy of GUIs
by Joe Winchester.............................48
LABS

Oracle EDA Suite
Supporting events without complex
custom coding
Reviewed by Mark Simpson and Mark Waite..............................52
LABS

Parasoft Jtest 8.0
A real heavyweight
Reviewed by Jason Bell..............................58
JSR WATCH

JSR 306 Gets Noticed,
Draws Valuable Feedback
Improving the JCP
by Onno Kluyt.............................62

18 by Boris Minkin

Adding pervasive
computing support
to existing applications

Features

JDBC 4.0
by John Goodson and Mark Biamonte

Real SOA
by Andrew Borley, Simon Laws,

and Haleh Mahbod

50

38

JDJ.SYS-CON.com6 November 2006

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Senior Vice President, Editorial and Events:

 Jeremy Geelan jeremy@sys-con.com

Advertising
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

 Robyn Forma robyn@sys-con.com

Advertising Sales Manager:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:

 Lauren Genovesi laureng@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Paula Zagari paula@sys-con.com

 Richard Walter richard@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

n the beginning there was
nothing: no Java and no data.

Then someone said, let there be
data and relational databases with
SQL were born.

And someone said, let Java talk to
databases, and JDBC was born.

And someone saw that JDBC was
good, but someone else saw that
JDBC was bad, and EJB with CMP
were created.

And someone said, J2EE containers
are bad and POJO has resurrected.

And entity beans were slow and
heavy; Hibernate was born and
people forgot SQL, which was
a sin.

And someone said, J2EE is no good,
and he divided Spring framework
from J2EE.

And fifty more people said nothing
is good, and they created fifty
more Java frameworks. And poor
Java Joe said, “I’m sick and tired
of this variety. I’m going back to
Java EE.”

 Some enter-
prise Java shops
that were using
J2EE application
servers and EJB
2.x found that the
combination was
overkill for most

of their applications, and deci-
ded to look for an alternative.
Spring framework combined with
Hibernate seems to be a logical
alternative to J2EE, but will this
combo deliver a light weight re-
placement for Java EE, especially
when greatly simplified EJB 3.0 is
available?
 In my opinion, not only the
Spring/Hibernate combo, but
even each one separately, is pretty
heavy as any framework. Only
reusable loosely coupled compo-
nents are lightweights.
 Spring framework is presented
as a set of components that can
be used separately, but you can
also wire them together by adding
two pounds of XML. But the min-
ute you do this, you fall into an
XML trap. If you use any single
component of the Spring frame-
work, it’s lightweight. But since it
takes two to tango, it’s as if you’re
pulling a tiny roll of thin wire out
of your pocket (a.k.a. XML), which
becomes heavyweight because
wires tend to twist and create a
mess.
 Concerning Hibernate, I’m not
even sure why so many people are
using it in the first place. I could
see an enterprise architect wanting
to use it to lay out a brand new

design of a stack
of business ap-
plications, and to
enforce it to a
firm-wide standard
for data persistence.

–continued on page 10

Enterprise Viewpoint

Spring + Hibernate
EJB3, POJO + JDBC?

I

Yakov Fain is a Managing

Principal of Farata Systems. He’s

authored several Java books

and dozens of technical articles.

SYS-CON Books will be releasing

his latest book, “Rich Internet

Applications with Adobe Flex and

Java: Secrets of the Masters” this

fall. Sun Microsystems

nominated and awarded Yakov

with the title Java Champion. He

leads the Princeton Java Users

Group. Yakov teaches Java and

Flex 2 at New York University.

He is an Adobe Certified Flex

Instructor.

yfain@faratasystems.com

Yakov Fain
Enterprise Editor

Spring is probably one of the best
Java frameworks available today.

It has only one drawback: it’s a framework”
“

�������������������
���� ���������

�������������
��������������������

�
�

���� ������� ��������� ����� ����� ���� ������� ����� ����������� ���������� ���� ������ ����� ������������
��������� ��

�������������������������������

���

�������������������
���� ���������

�������������
��������������������

�
�

���� ������� ��������� ����� ����� ���� ������� ����� ����������� ���������� ���� ������ ����� ������������
��������� ��

�������������������������������

���

JDJ.SYS-CON.com8 November 2006

JDJ.SYS-CON.com10 November 2006

Enterprise Viewpoint

–continued from page 6

But if you’re developing a typical
CRUD application, especially
when it comes to using al-
ready existing and not per-
fectly designed databases, why
even bother with Hibernate?
Does SQL scare you that much?
 Take an application built on
Spring components intercon-
nected with thin wires, put
Hibernate on top of it with wires
of a different diameter, and the
maintainability of your applica-
tion will decrease while hard-
to-find bugs make themselves
at home in your application.
 Over the last three to four
years, many people have been-
bashing EJBs as an unnecessary
complicated framework with
lots of convoluted XML descrip-
tors. Now EJB 3.0, with its
annotations, is trying to appeal
to enterprise developers again.
This won’t be easy, because bad
memories last for years. But
don’t kid yourself when you
substitute EJB for the Spring/
Hibernate combo: it won’t make
your life much easier.
 I do believe in standalone
POJOs that know nothing about
the environment they’re in,
but do know how to perform a
specific function (i.e., send a
message, manage transactions,
create a pretty report based on
provided SQL, model some fi-
nancial process, find an optimal
route, and the like). Just pass
the required parameters to this
black box, get the result back,
and do whatever you want with
it. Inversion of Control or the
Dependency Injection paradigm
is nothing new, and it works fine.
For ten years, I’ve been routinely
using it (without knowing its

future name) in my PowerBuilder
applications. It was a period of
event-driven programming. We
were creating user objects with
custom events. Whoever wanted
to pass some information to
this object would fire a custom
event that would carry required
data and inject them right into
the object. Look, ma! No wires!
Today, I do the same thing in
ActionScript 3. Stop wiring, just
write the code required by your
business application and forget
about it when the new project
starts. But don’t forget about
independent reusable compo-
nents.
 Spring is probably one of the
best Java frameworks available
today. It has only one drawback:
it’s a framework.
 Hibernate offers you a cach-
ing object? Great! Let’s use it,
without the need to install the
whole shebang. Get the caching
component somewhere, roll up
your sleeves, and create an in-
stance of this object passing all
required parameters to its con-
structor. Stop wiring; get back to
programming. The combination
of good knowledge of SQL, JDBC,
caching (only if needed), and a
pagination component (only if
needed) can get you pretty far.
 At one of my recent presenta-
tions to Java developers, I asked
the question, “Who knows
how to delete duplicates from
a database table?” No one
knew. When I asked the same
question on one of the online
forums, some Java developer
proudly announced that with
Hibernate, you don’t create du-
plicates in the first place. Thank
you very much! How about
some real world experience?
What if the database table with

dirty data already exists and
dirty feeds keep coming in
nightly? Do not kid yourself.
Learn SQL.
 If you want to write a simple
application, don’t start by look-
ing for a “light-weight” third or
fourth party framework. Pro-
gram your business logic in
POJOs, and your database ac-
cess in DAOs. Keep it simple.
Need transactions? Find a
transaction manager. Need
scalability? Consider using
asynchronous messaging be-
tween components.
 Floyd Marinescu starts his
foreword to the book
“Beginning EJB 3” (aPress)
as follows:

 EJB 3 is a very important
milestone for the specification.
Not only is it significantly easier
to use, but also for the first time
(in my opinion), the specifica-
tion is now built around the
proven needs of the develop-
ment community, standardizing
existing best practices instead
of being the result of design by
committee.

 It’s great that the bad guys
from some evil committee
were finally overthrown by the
good guys, who are actually
paying attention and incorpo-
rating best practices and ideas
of the multitude of open source
frameworks.
 And someone said, go back
to Java EE standards. And he
created Java EE 1.5 and it was
good. It was not the best, but
it gave people a common
ground and fertile soil for
seeds of a new generation of
enterprise Java applications.
Amen.

Over the last three to four years, many people have been
bashing EJBs as an unnecessary complicated framework with

lots of convoluted XML descriptors”
“ top MISCONCEPTIONS that drive

Meet the most misunderstood developer team in the world.

our Crystal Reports dev team crazy

Crystal Reports® is too expensive. Actually, the developer edition is just $5951 USD (or
upgrade for only $3151). Complimentary Crystal Assist support2 provided with purchase.

Crystal Reports doesn’t include a free runtime license. Not true, the developer edition
includes a free runtime license3 for each component engine.

Getting reports on the web is complex. False, the developer edition includes crystalreports.com4

and Crystal Reports Server5 to speed and simplify web reporting deployments.

Crystal Reports only works in Windows®. Not quite, whether you need to create or
deploy reports on Windows, Linux or Unix, we have a Crystal Reports technology for you.

Find out more at: www.businessobjects.com/devxi/misunderstood

1 Suggested retail price. 2 Complimentary access to support engineers and self-help. 3 Includes an unlimited runtime license for internal use of .NET, Java, and COM engines. 4 Includes ten named
user licenses. 5 Includes fi ve named user licenses. The Business Objects logo and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other
countries. All other names or products referenced herein may be the trademarks of their respective owners. © 2006 Business Objects. All rights reserved.

Over the last three to four years, many people have been
bashing EJBs as an unnecessary complicated framework with

lots of convoluted XML descriptors”
“ top MISCONCEPTIONS that drive

Meet the most misunderstood developer team in the world.

our Crystal Reports dev team crazy

Crystal Reports® is too expensive. Actually, the developer edition is just $5951 USD (or
upgrade for only $3151). Complimentary Crystal Assist support2 provided with purchase.

Crystal Reports doesn’t include a free runtime license. Not true, the developer edition
includes a free runtime license3 for each component engine.

Getting reports on the web is complex. False, the developer edition includes crystalreports.com4

and Crystal Reports Server5 to speed and simplify web reporting deployments.

Crystal Reports only works in Windows®. Not quite, whether you need to create or
deploy reports on Windows, Linux or Unix, we have a Crystal Reports technology for you.

Find out more at: www.businessobjects.com/devxi/misunderstood

1 Suggested retail price. 2 Complimentary access to support engineers and self-help. 3 Includes an unlimited runtime license for internal use of .NET, Java, and COM engines. 4 Includes ten named
user licenses. 5 Includes fi ve named user licenses. The Business Objects logo and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other
countries. All other names or products referenced herein may be the trademarks of their respective owners. © 2006 Business Objects. All rights reserved.

JDJ.SYS-CON.com12 November 2006

he struggle to integrate business
assets across the .NET - J2EE
technology divide is legendary.
So it should come as no surprise

that the emergence of portal applica-
tions as an enabler of Service Oriented
Architecture is forcing enterprises to
revisit interoperability challenges in a
user-centric environment.
 The aim of a portal is to integrate all
enterprise data and applications into
a coherent whole, and it is wasteful if
the portal becomes simply another silo,
limited in what it can aggregate due to
back end technology constraints. For
the portal to be an effective collabora-
tion and productivity enhancement
tool, it needs to be populated with
enterprise content, irrespective of
whether the applications were written
in C#, Visual Basic.NET, or Java. This
article will survey various technology
options that are available for integrat-
ing content on the .NET platform into
IBM WebSphere Portal Server.

Portals as Enablers of SOA:
Options for Integration
 Consider the scenario where a
number of business-critical applica-
tions are running on Microsoft’s .NET
Framework-based technology. The
business already has WebSphere Portal
running portlets that offer common
sign-on and branding. End users want
assets that are currently implemented
in .NET on the portal, and IT manage-
ment has the job of figuring out how
to make this work.

Rewrite .NET Apps in Java
 One approach is to rewrite .NET
applications in Java, which is a good
strategy if 1) the intention is to mi-
grate all development and infrastruc-
ture to Java; 2) the applications are
small and there aren’t very many of
them; and 3) ample Java developers
are on hand.

 If the .NET application is written us-
ing tiers, with a typical nTier architec-
ture offering resource, service, business
logic, and presentation tiers – a partial
rewrite may be an option. One retailer
I recently encountered favored this ap-
proach, rewriting the presentation tier
as Java portlets, and then consuming
their .NET middleware using SOAP Web
services. Following this approach, the
retailer could achieve its end user re-

quirements such as single sign-on using
WebSphere Portal’s end-user facilities.
A partial rewrite provides all the benefits
of a pure Java portlet implementation
at the cost of disposing some of the
existing work and skills. However, the
retailer would face the risk of potential
interoperability problems between the
.NET and Java Stacks across SOAP Web
Services. As the original architecture
was .NET end-to-end, it is highly likely
that used complex data types such as
the .NET DataSet, which interoperate
nicely on a .NET stack, will fail on a
mixed stack, and as such may neces-
sitate considerable re-engineering of the
middleware tiers.

Web Services for Remote Portlets
 A second option for a multi-platform
scenario is to use a relatively new stan-
dard called “Web Services for Remote
Portlets” (WSRP). This is a powerful
yet limited solution. The concept is
simple: Web services typically only com-
municate data, and not the presenta-
tion. With WSRP, the standards-based
technology of Web services is expanded

Integration

by Laurence Moroney
Jumpstart SOA

T

Laurence Moroney is a

senior architect and the

director of technology

evangelism for Mainsoft

Corporation, where he is

responsible for counseling

customers about their

interoperability and

porting challenges.

Previously, he worked

in several fields, designing

mixed architectures for

financial services systems,

airports, casinos, and

professional sports.

ljpm@sportstalk-ny.com

Pragmatic approaches to integrating .NET and
Java components within WebSphere portal

 Figure 1 Running the portfolio on IIS

JDJ.SYS-CON.com14 November 2006

to deliver HTML markup in the payload.
This allows for applications to run on
their native platform as WSRP “Produc-
ers.” Portals that want to integrate them
to make WSRP calls to them to get their
UI as WSRP “Consumers.” It’s possible
to make modifications to applications
that run on the .NET Framework, and
expose them as WSRP “Producers,”
which could then be consumed by a
Java portlet running on WPS. However,
Microsoft has not yet produced a facil-
ity for applications to be exposed as
WSRP producers in either its SharePoint
product suite or its upcoming one-stop
API for integrated applications called
the “Windows Communication Foun-
dation.” Nevertheless, WSRP can be
used to integrate non JSR-168 applica-
tions into portals. While WSRP largely
preserves the existing .NET develop-
ment model and the Windows runtime,
it does require the amendment of the
presentation layer to make it a WSRP
producer.
 One of the limitations of WSRP is the
brittleness it introduces into the envi-
ronment. If an application is consumed
using WSRP from a portal server that
requires a sign-on, a portlet that runs
on the portal server needs to be written

that can read from its credential store,
and those credentials are then used to
sign onto the WSRP producer using a
WSRP call. It would then have to parse
the SOAP message containing the WSRP
code, including the UI and generate the
UI from that, overriding the existing
WSRP functionality on the portal server.

Re-hosting ASP.NET Applications as
JSR-168 Portlets
 A third option for .NET-Java integra-
tion – available exclusively for Web-
Sphere Portal – is Mainsoft’s cross-
platform software, Visual MainWin for
J2EE, Portal Edition. This technology
recompiles .NET applications to run as
JSR-168 portlets that can run natively
on WebSphere Portal. The approach
delivers a tight integration between
.NET and J2EE on the Portal container,
providing all the advantages of Java-
written portlets, such as single sign on,
universal branding, inter-portlet com-
munications, and easy management,
without having to reengineer existing
.NET components.
 Visual MainWin is similar to WSRP in
that it preserves existing .NET compo-
nents and development models. The
primary difference is that the runtime is

WebSphere rather than Windows. Visual
MainWin works by using a patent-pend-
ing technology that cross compiles the
Microsoft Intermediate Language (MSIL)
code generated by the .NET Framework
compilers into Java Byte code, and it
provides a Java-based implementation
of the .NET Framework runtime support
classes on which the application will
execute. The Portal Edition targets Web-
Sphere Portal, allowing .NET developers
to port ASP.NET Web forms applications,
ASP.NET Web Services, or .NET class li-
braries into JSR-168 Portlets, J2EE-based
Web services, and J2EE class libraries,
respectively. Some reworking is typically
necessary to address the paradigm
shift between a Web application and a
Portlet, but in the majority of cases, this
is simply removing hard-coded visual
styles and replacing them with ones that
the portal server uses to brand portlets
running within it.
 Visual MainWin also includes a plug
into the Visual Studio .NET IDE and
enables C# and Visual Basic.NET de-
velopers to continue using Microsoft’s
popular IDE to develop and maintain
ASP.NET applications running on
WebSphere Portal. The cross-platform
tool enables code sharing between
development teams using .NET and
Java technologies, including the facility
to directly consume Java-based assets
such as WebSphere Portal APIs and
EJBs from within the Visual Studio.NET
development environment.
 Take, for example, a label on an ASP.
NET Web forms application that has
been developed using Visual Studio,
with font and size attributes that are
appropriate for its native environment.
In a portal environment, the label’s at-
tributes are set by the portal container
rather than by Visual Studio so the label
is consistent with all other applications
in the Portal. When re-hosting the ASP.
NET Web forms application, .NET devel-
opers remove the code used to set the
font type and size properties. This does
not suffer from the architectural brittle-
ness of the WSRP approach. Whenever

Integration

…it is wasteful if the portal becomes simply another silo,
limited in what it can aggregate due to back end

technology constraints”
“

 Figure 2 Running the portfolio on WPS

�������������� ��
���
��
���

��
��

������������������������ ��� ��

��

����������������������

��������������� �������������������� ������������

�������������� ��
���
��
���

��
��

������������������������ ��� ��

��

����������������������

��������������� �������������������� ������������

JDJ.SYS-CON.com16 November 2006

Integration

the styles used to brand the application
change, the portal container sends
them to the ASP.NET application.
 The ability for Visual Studio develop-
ers to retain control over the enterprise
applications was a primary reason that
a Fortune 100 personal insurer pursued
this approach. This insurance provider
resulted from two insurance provid-
ers that merged. One of the providers
was built on IBM technologies and
the other was a Microsoft shop. Post
merger, the insurer had over 1,000 Vi-
sual Studio developers, many of whom
have been supporting a homegrown
Windows portal comprised of about
700 ASP/VB6 applications. Mainsoft
and Prolifics, a premier IBM business
partner, demonstrated the ability to
replace a Windows-based portal with
a WebSphere Application Server and
WebSphere Portal. The team required
five staff-days to migrate a sample ASP/
VB6 application to WebSphere Portal.

Sample ASP.NET Portlet
Implementation on WebSphere
Portal
 Take a simple application written
as an ASP.NET Web forms application
that provides a user interface layer
onto middleware implemented using
Web services. In this case, the UI layer
provides the portfolio holdings. The
application is a single Web form that
contains a data grid. This data grid uses
ADO.NET data binding to an XML data
source to present the information. The
data source is built from an XML file (in
the real world, it would be a middle-
ware service that wraps a database)
and a public Web service that provides
delayed stock quotes. The overall
presentation is defined by hand coding
it on the Web forms level. Sign-on is
custom written using Windows forms
authentication. You can see the applica-
tion, running on Windows with IIS in
Figure 1.

 When porting this application to run
on WPS, some minor modifications
were needed. Many of these are busi-
ness-driven as opposed to technology
shortfalls. For example, the application
used its own custom sign-on instead
of integrating with the portal sign-on.
Thus the code for custom sign-on
should be removed, and replaced with
code that integrates with the WPS
credential store and user management
APIs. This is simpler than it sounds, be-
cause Visual MainWin enables the ASP.
NET application to consume the Java
APIs in the same way any other Java ap-
plication can handle them. Additionally,
the hard-coded visual styling should
be removed and replaced with the CSS
tags that the WebSphere Portal server
defines, so that the application can be
branded and styled properly.
 Once all this is done, it’s simply a
matter of recompiling the applica-
tion into Java code, and deploying it to
WebSphere Portal using Visual Main-
Win. Deployment is automatic to the
development server, and a WAR file can
be generated for deployment to staging
and production servers.
 The re-hosted application can be
seen in Figure 2. This shows tight inte-
gration with WPS, providing a welcome
message to the user by retrieving her
name from the WPS credential cache as
well as demonstrating integration with
Java-based assets such as the Workplace
client people awareness functionality.
 The code for this portlet is avail-
able for download here at http://dev.
mainsoft.com/Portals/0/Downloads/
ASPNETPortfolio.zip
 Of course, re-hosting is not limited
to existing ASP.NET applications to
WPS using this toolkit. Visual MainWin
also enables .NET developers to create
new applications as Java portlets on
WPS that can take advantage of all the
underlying functionality for WPS that
was previously only available to Java

developers (WCT People Awareness,
Edit Mode, Portlet-to-Portlet Integra-
tion, and “wiring,” to name just a few).

Conclusion
 Should you have a complex data
center where applications run on varied
technology stacks, and you want to use
the benefits of WebSphere Portal for “on
the glass” integration, there are three
options available to you:
• Rewrite applications, or their pre-

sentation layer, as JSR 168-compliant
Java portlets, which can integrate
fully into WebSphere Portal. This is
ideal in scenarios with limited .NET
code in which demand for integrated
end user experience is high. It’s best
suited for a transformation to a Java
only shop.

• Use WSRP to consume .NET applica-
tions in WebSphere Portal, preserving
.NET components and developers.
However, this approach has limita-
tions in what it can support. WSRP
may require an extensive rewrite of
applications to get them to work, and
functionalities such as single sign on,
and consistent branding can intro-
duce architectural brittleness.

• Visual MainWin for J2EE, Portal
Edition runs ASP.NET applications
natively on WebSphere Portal, with-
out having to rewrite the application
in Java. It also extends WebSphere
Portal’s rich end user functionalities
across C# and Visual Basic com-
ponents. This approach is useful
when implementing a mixed portal
environment quickly; when dynamic
business requirements exist for.NET
applications; and when retention of
the current development model is
preferred.

 Ultimately, the extent of integration
requirements, business requirements,
and end user needs will define the best
solution to use with WebSphere Portal.

Integration
with WPS

Integration with
Other Portlets

Manageability Coding Effort Preservation of
.NET Skills

Full Rewrite in JSR-168 Excellent Excellent Excellent Extensive Poor

Partial Rewrite in JSR-168 Excellent Excellent Good GoodModerate

Use Visual MainWin Excellent Excellent Excellent ExcellentMinor

Use WSRP ExcellentModerateDifficultPoorPoor

JDJ.SYS-CON.com18 November 2006

pplying XSLT (eXtensible Stylesheet Language for
Transformations) to XML documents can be done using
the Java EE (formerly J2EE) Servlet fi lters model and
Java Server Pages (JSP) technology. Servlet fi lters can

be invoked before or after the invocation of a particular servlet
or JSP, based on the incoming URL mapping, which could be
specifi ed as the central controller servlet in a framework such
as Struts or a custom-developed one. The basic logical model is
shown in Figure 1.

In Figure 1, a Struts framework is used in combination with
Servlet fi lters technology. When a request comes from the cli-
ent (Browser, PDA or Smart Phone), the controller servlet of the
Struts framework gets called and in turn, invokes an appropriate
action based on the mapping of the submitted URL, as defi ned
in Struts confi guration fi le (struts-confi g.xml). Inside the action,
a particular Web controller logic is processed (such as parsing
of parameters) and then a business logic bean is invoked (for
example, EJB), which communicates with the database server
and performs necessary database operations in the appropriate
transactional scope. A response from the business bean then is
encapsulated in the action response and is delivered to the cli-
ent by the corresponding JSP.
 In this case, the JSP would be coded in the XML form – mean-
ing that the JSP fi le will not contain HTML as it usually does, but
an XML markup instead. A reference to the proper XSLT style
sheet would be dynamically generated, based on the MIME
type of the incoming request (UserAgent header for most of the
HTTP-based clients). Application of XSLT can be done using
Servlet Filter technology, where the servlet or JSP response is
modifi ed after the processing by the servlet is completed. Modi-
fi cation of the servlet response would encompass the application
of the appropriate XSLT style sheet using, for example, Java API
for XML Processing (JAXP). This actually simplifi es things, since
no custom XML parser is required, and one can use standard
J2SE technology to utilize all XML-based processing (such as
DOM, SAX, and XSLT).
 Listing 1 demonstrates the usage of JAXP API for processing
and passing transformation to the HTTP Servlet response.
 The xmlSource and styleSource variables in the Code Listing
1 have the StreamSource type, containing source of XML and
XSLT stylesheets.
 In Listing 1, several JAXP classes are used. First, Transformer-
Factory class follows the Factory design pattern to generate a
new instance of XSLT transformers. The fi le name XSLT would be

supplied as a parameter, while original XML source would come
from the JSP response. CharArrayWriter is used to buffer the
contents to be sent later on to the HttpServletResponse output
stream.

Advantages and Disadvantages of This Approach
 The advantages of using XSLT include:
• The ability to better separate model, view and controller in

the application.
• An additional view tier (XSLT stylesheet) is introduced that

is completely separate from any Java or logical processing
and encourages developers to use optimal design strategies
without mixing Java code with the view (something that
commonly happens in the coding of regular JSP pages).

• The JSP is device-independent: it contains just XML, or data
which can be converted into any appropriate view for the
particular device, be it Wireless Markup Language (WML),
XHTML, regular HTML, etc.

 The disadvantage of this approach is that we need an extra
layer of processing which can introduce additional perfor-
mance burden on the system. This is because the application
of XSLT is generally a processor-intensive operation, and for
large JSP pages, especially large style-sheets, performance
degradation can result. One way to partially mitigate this
problem is to allow the client to handle the application of
XSLT. For instance, newer versions of the Internet Explorer
browser such as 6.0 SP1 or later include an XSLT engine that’s
compliant with W3C standards, and can easily replace server
based XSLT application. In the client XSLT processing model,
the sever will pass XML and XSLT style sheets directly to the
browser, and the browser will be responsible for actually ap-
plying the stylesheet to the XML data, unlike the server XSLT
processing mechanism, when XSLT is applied to XML on the
server and the result is passed to the client. However, this
approach is limited due to the inability of other client devices
to perform similar operations – it would be highly unlikely
to expect PDA or Smart Phone to perform such an extensive
operation as XSLT’s transformation.
 Another possibility is that developers experience diffi culty
debugging XSLT without the use of extra tools. Besides, XSLT is
diffi cult to debug because it is not a complied language. Every-
thing is happening at the runtime during execution of the XSLT
application. Industrial-strength development environments,

A

Boris Minkin is a Senior

Technical Architect

of a major fi nancial

corporation. He has

more than 15 years of

experience working in

various areas of informa-

tion technology and

fi nancial services. Boris

is currently pursuing

his Masters degree at

Stevens Institute of Tech-

nology, New Jersey. His

professional interests

are in the Internet tech-

nology, service-oriented

architecture, enterprise

application architecture,

multi-platform

distributed applications,

and relational database

design.

bm@panix.com

pplying XSLT (eXtensible Stylesheet Language for supplied as a parameter, while original XML source would come

A

by Boris Minkin

Feature

Adding pervasive
computing support
to existing applications

for Java EE Applications
XSLT

19November 2006JDJ.SYS-CON.com

such as Microsoft Visual Studio and IBM WebSphere Studio
Application Developer include powerful debuggers that help
alleviate this issue.

Converting Existing J2EE Application to XSLT Approach
 The following few steps will describe the conversion of the
existing J2EE applications to use the XSLT approach to display
content to multiple device types.

Environment Setup
 We’ll use DBTestSH application developed in the ar-
ticle entitled: “Bringing Together Eclipse, WTP, Struts, and
Hibernate”(http://java.sys-con.com/read/216320.htm). We’ll
use the following tools and technologies:
• J2SE 5.0 JRE: http://java.sun.com/j2se
• Eclipse 3.2: www.eclipse.org
• XSLT Parser: Xalan-J implementation http://xml.apache.
 org/xalan-j/
• WTP 1.5: www.eclipse.org/webtools
• Tomcat 5.0: http://jakarta.apache.org/tomcat/
• MySQL 4.0.25: www.mysql.com
• MySQL Connector/J driver 3.1: www.mysql.com/products/
 connector/j/
• Struts 1.1: http://struts.apache.org
• Hibernate 3: www.hibernate.org
• Microsoft Internet Explorer Browser 6.0 & Microsoft Mobile
 Explorer Emulator: http://www.devhood.com/ Tools/tool_
 details.aspx?tool_id=52

 The purpose of this exercise is to extend the existing applica-
tion to use XSLT style sheets to convert our JSP pages (coded as
XML documents) into the format appropriate for the particular
agent type, e.g., Microsoft Mobile Explorer or Microsoft Internet
Explorer.
 In order to set up the environment, we need to do a few steps
over those described in previous article http://java.sys-con.
com/read/216320.htm. First, make a copy of the DBTestSH
project (obtained from the previous article). Simply right-click
on it and select “Copy.” Then right-click again, select “Paste,”
and the simple screen shown in Figure 2 will be displayed by
Web Tools.
 After that, several important libraries need to be added
under WEB-INF\lib. These are XSLT parser libraries. We’ll use
open-source Apache Xalan-J processor to do the job; it works
quite well with Sun standard JAXP API. The following JARs have
to be placed under WEB-INF\lib:

 xalan.jar - Xalan XSLT processor.

 xercesImpl.jar - implementation of Xerces XML parser.

 xml-apis.jar - XML APIs for JAXP compatibility.

 serializer.jar - XML serialization APIs.

 We’ll also create a new directory structure under Web Con-
tent for our XSLT style-sheets:

• WebContent
 – stylesheets

 • ie: Will contain style sheets for Internet Explorer.
 • Wml: Will contain style sheets for Microsoft Mobile
 Explorer.

 This can be easily done using the Eclipse “New Folder” wizard.

Servlet Filter Code and Job Description
 The conversion job as shown in Figure 1 will be done by
a Servlet Filter. Servlet Filters have been a standard part of
Servlet API since version 2.3. They allow modifying HTTP
response and can serve many different purposes, includ-
ing enforcing security or access restrictions of the applica-
tion, caching the application content, etc. In our example,
however, we’ll use servlet fi lters to process applications of
the XSLT style sheet to the XML data passed from the JSP. My
example has been partially borrowed from Sun Microsys-
tems’ reference to servlet fi lters implementation at http://
java.sun.com/products/servlet/Filters.html, however, a few
modifi cations were made to the code in Listing 2 in order
to fi t into our application. For instance, I’ve added the code
to determine the content type based on the “user-agent”
header (containing client information, such as browser type)
and to determine the appropriate XSLT style sheet based on
the provided request URI.
 In Listing 2, we use a reference to the CharResponseWrap-
per class that is used to wrap HttpServletResponse, so its String
contents can be easily retrieved when needed.
 Listing 3 shows a simple wrapper for HttpServletResponse
from a servlet.

Figure 2 Copy/Paste the project in Web Tools

Figure 1 Architecture of the J2EE / Struts application with pervasive support

JDJ.SYS-CON.com20 November 2006

 Listing 2 has several important methods that were added
to fit Sun’s example into our application:
• determineStylesheetNameFromRequest: Determines

the style sheet name based on the request URI. Another
way of doing this is by using XML file mapping, which
looks like a more elegant approach, but for the purposes
of simplicity, we have just hard-coded the mappings
between URIs and corresponding XSLT stylesheets.

• determineStylesheetPathFromRequest: We’ll have a
couple of directories under our Web Content root direc-
tory where XSLT stylesheets will be placed – each direc-
tory corresponds to the set of stylesheets for a particular
browser type.

• determineContentTypeFrom: We also need to deter-
mine the content type of the request. For the Internet
Explorer, it would simply be “text/html”. For a Wireless
Access Protocol (WAP) browser, such as Microsoft Mobile
Explorer, or PDA, or a smart phone capable of serving
WML content, it would be “text/vnd.wap.wml”. Other
types can be added by simple modification of this method.

 Now, that we covered auxiliary private methods of
ApplyXSLTFilter.java, let’s talk about how the method
doFilter(ServletRequest, ServletResponse, FilterChain)
works. Once the content type, the XSLT style sheet name

and the path are determined by call-
ing methods at the beginning of the
filter processing, we set the response
type to the content type determined
and get the real OS path for the
stylesheet using a handy method called
getRealPath(String) of javax.servlet.
ServletContext. Now, we have our style
sheet source by reading a file using
StreamSource class from JAXP.
 In the next step, we obtain the re-
sponse writer from HttpServletResponse,
wrap it in CharResponseWrapper and
pass control to doFilter(ServletRequest,
ServletResponse, FilterChain), which
executes the underlying Struts action
and populates our response with data.
Obtaining this data is easy if you use the
same wrapper class, and we have our
XML source – wrapped as StreamSource
class from JAXP.
 Finally, XSLT transformation will take
place and write the transformed output
to the HTTP response, displaying it to the
appropriate device type.

Setting up the Servlet Filter in
the Web Deployment Descriptor
 A Java Web application actually
knows that it has a servlet filter from the
Web Deployment Descriptor: web.xml
file, as shown in Listing 4.
 This mapping specifies the name
of the Servlet filter and its class. IT also
defines the association with URI patterns

that this filter will be invoked upon. Since we use Struts, *.do
pattern will be associated with all the filter invocations. JSP
pages can be invoked independently from Struts, so we also
need to make sure that the JSP association with Servlet Filter
is held on. For that purpose, one minor step needs to be done:
index.html page should be renamed to index.jsp, so that our
filter knows to handle it. Otherwise, we’d have to add a third
mapping for *.html files.

Converting Our JSP Pages
 As described at the beginning of this article, existing JSP
pages will be split into JSP files producing XML and style
sheets with XSLT content. All the scriplets, expressions, and
other JSP artifacts will remain in JSP pages, but all the graph-
ics, HTML content, JavaScript, and all the view artifacts will
go to the appropriate XSLT style sheets. Listing 5 shows the
example of such a conversion.
 Now, we remove all the graphics from customer.jsp, all the
view producing code (remember MVC?), keeping only the
data in XML format, as shown in Listing 6.
 As we can see from Listing 6, all the scriplets, expressions,
jsp:useBean tags – all this is remaining in the JSP file, but
all the view attributes are gone. Where? They go into XSLT
stylesheets – one for each browser type – under the corre-
sponding directory, as shown in Listing 7.
 For those, who are not familiar with XSLT, it may be
somewhat hard to understand the code in Listing 7. Basically,
the entire HTML is wrapped into a sing XSLT template that
is applied to the root of the XML document during transfor-
mation. “xsl:for-each” is a loop construct in XSLT that allows
looping through a bunch of XML data – in our case customer
data. At every step, it displays the corresponding customer
data using “xsl:value-of select” construct that displays a
particular attribute of the CUSTOMER element from our
JSP/XML file (such as ID, first name, last name, etc.). Note the
“xsl:output” element, which designates the content type as
text/html.
 Listing 8 is the style sheet for WML output.
 When we invoke the Mobile Explorer Emulator, we should
be able to see our customer list on a mobile phone screen, as
shown in Figure 3.

Conclusion
 In this article, I showed you how to convert a Java Web
application to be used with multiple device types. It added
an extra layer of processing, but at the same time increased
application flexibility greatly by allowing supporting multiple
independent views using the same back-end model, in the
letter and spirit of Model-View-Controller paradigm. Using
Eclipse and Web Tools simplifies this job even further, as they
provide JSP editors, XML editors, and validators that allow
one to make sure their XSLT and XML source is valid and will
execute properly.
 My wish list for Web Tools starts with a XSLT debugger that
would allow debugging XSLT processing just like in Java. This
would help tremendously in figuring out what’s wrong with
your XSLT code, but for now, we still have to rely mainly on
the console messages.

–Listings on page 22

Feature

 Figure 3 Displaying the customer page on the

Mobile Explorer Emulator ��

��

AJAX for Java

������������������������������������
���
���
�������������������������������������

�������������������������������

����������������������������������
�������������������������������������
���
���

���

�
�
�
�

��

��

AJAX for Java

������������������������������������
���
���
�������������������������������������

�������������������������������

����������������������������������
�������������������������������������
���
���

���

�
�
�
�

JDJ.SYS-CON.com22 November 2006

Feature

Listing 1: Example of JAXP XSLT Transform to HTTP Servlet Response

TransformerFactory transformerFactory =

 TransformerFactory.newInstance();

Transformer transformer =

transformerFactory.newTransformer(styleSource);

CharArrayWriter caw = new CharArrayWriter();

StreamResult result = new StreamResult(caw);

transformer.transform(xmlSource, result);

response.setContentLength(caw.toString().length());

out.write(caw.toString());

Listing 2: ApplyXSLTFilter.java

package filter;

import java.io.CharArrayWriter;

import java.io.File;

import java.io.IOException;

import java.io.PrintWriter;

import java.io.Reader;

import java.io.StringReader;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.xml.transform.Source;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.stream.StreamSource;

public class ApplyXSLTFilter implements Filter {

 TransformerFactory transformerFactory = TransformerFactory.newIn-

stance();

 FilterConfig filterConfig = null;

 /**

 * Perform filtering action to apply XSLT

 */

 public void doFilter(ServletRequest request, ServletResponse

response,

 FilterChain chain) throws IOException, ServletException {

 HttpServletRequest req = (HttpServletRequest)request;

 System.out.println("Starting the filter...");

 System.out.println("Path info: " + req.getRequestURI());

 // Determine XSLT attributes

 String styleSheetPath = determineStylesheetPathFromRequest(req);

 String contentType = determineContentTypeFrom(req);

 String styleSheetName = determineStylesheetNameFromRequest(req);

 String styleSheet = styleSheetPath + styleSheetName;

 System.out.println("Here is the stylesheet we are going to load:

" + styleSheet);

 response.setContentType(contentType);

 String stylePath =

 this.filterConfig.getServletContext().

getRealPath(styleSheet);

 File styleFile = new File(stylePath);

 if (!styleFile.exists()) {

 System.out.println ("File " + styleFile + " does not exist");

 } else {

 System.out.println ("File " + styleFile + " exists!");

 }

 System.out.println("Retrieving stylesheet Real Path: " + style-

Path);

 Source styleSource = new StreamSource(styleFile);

 PrintWriter out = response.getWriter();

 CharResponseWrapper wrapper = new CharResponseWrapper((HttpServlet

Response)response);

 chain.doFilter(request, wrapper);

 // Get response from Servlet

 StringReader sr = new StringReader(wrapper.toString());

 Source xmlSource = new StreamSource((Reader)sr);

 // Ok... Transform the xml:

 try {

 Transformer transformer = transformerFactory.newTransformer(style

Source);

 CharArrayWriter caw = new CharArrayWriter();

 StreamResult result = new StreamResult(caw);

 transformer.transform(xmlSource, result);

 response.setContentLength(caw.toString().length());

 out.write(caw.toString());

 } catch (Exception ex) {

 out.println(ex.toString());

 out.write(wrapper.toString());

 }

 }

 public void init(FilterConfig arg0) throws ServletException {

 this.filterConfig = arg0;

 }

public void destroy() {

 this.filterConfig = null;

}

 /**

 * Determine stylesheet path from request

 * @param req

 * @return

 */

private String determineStylesheetPathFromRequest(HttpServletRequest

req) {

 String userAgent = req.getHeader("user-agent");

 if (userAgent.indexOf("MSIE") > -1) {

23November 2006JDJ.SYS-CON.com

 return "/stylesheets/ie/";

 }

 if (userAgent.indexOf("MobileExplorer") > -1) {

 return "/stylesheets/wml/";

 }

 return "/stylesheets/ie/";

 }

 /**

 * Determine stylesheet name from request

 * @param req

 * @return

 */

private String determineStylesheetNameFromRequest(HttpServletReque

st req) {

 String uri = req.getRequestURI();

 int index = uri.lastIndexOf('/');

 uri = uri.substring(index + 1);

 System.out.println("Parsed URI: " + uri);

 if (uri.equals("index.jsp")) return "index.xsl";

 if (uri.equals("ListCustomers.do")) return "customers.xsl";

 if (uri.equals("customers.jsp")) return "customers.xsl";

 if (uri.equals("CreateCustomer.do")) return "customer_created.

xsl";

 if (uri.equals("customer_created.jsp")) return "customer_created.

xsl";

 if (uri.equals("CreateOrder.do")) return "order_created.xsl";

 if (uri.equals("order_created.jsp")) return "order_created.xsl";

 if (uri.equals("ListCustomerOrders.do")) return "orders.xsl";

 if (uri.equals("orders.jsp")) return "orders.xsl";

 if (uri.equals("failure.jsp")) return "failure.xsl";

 return null;

}

 /**

 * Determine content type request

 * @param req

 * @return

 */

 private String determineContentTypeFrom(HttpServletRequest req) {

 String userAgent = req.getHeader("user-agent");

 if (userAgent.indexOf("MSIE") > -1) {

 return "text/html";

 }

 if (userAgent.indexOf("MobileExplorer") > -1) {

 return "text/vnd.wap.wml";

 }

 return "text/html";

 }

}

Listing 3: CharResponseWrapper.java

In the code above, we use reference to CharResponseWrapper class

that is used to wrap HttpServletResponse, so its String contents

can be easily retrieved when needed.

package filter;

import java.io.CharArrayWriter;

import java.io.PrintWriter;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpServletResponseWrapper;

public class CharResponseWrapper extends HttpServletResponseWrapper

{

 private CharArrayWriter output;

 public String toString() {

 return output.toString();

 }

 public CharResponseWrapper(HttpServletResponse response) {

 super(response);

 output = new CharArrayWriter();

 }

 public PrintWriter getWriter() {

 return new PrintWriter(output);

 }

}

Listing 4: Filter Mapping

<filter>

 <filter-name>ApplyXSLTFilter</filter-name>

 <filter-class>filter.ApplyXSLTFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>ApplyXSLTFilter</filter-name>

 <url-pattern>*.do</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ApplyXSLTFilter</filter-name>

 <url-pattern>*.jsp</url-pattern>

 </filter-mapping>

Listing 5: The original customers.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-

1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Customers list</title>

</head>

<body>

<jsp:useBean id="customers" type="java.util.ArrayList<domain.

JDJ.SYS-CON.com24 November 2006

Feature

Customer>" scope="request"/>

Registered Customers:

<table border="1">

<tr>

 <th>ID</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Address</th>

 <th>Orders</th>

</tr>

<% for(domain.Customer c : customers) { %>

<tr>

 <td><%= c.getId() %></td>

 <td><%= c.getFirstName() %></td>

 <td><%= c.getLastName() %></td>

 <td><%= c.getAddress() %></td>

 <td><a href="/DBTestSH/ListCustomerOrders.do?cust_id=<%= c.getId()

%>">Orders</td>

<% } %>

</body>

</html>

Listing 6: XML-based customers.jsp

<?xml version="1.0" encoding="UTF-8"?>

<jsp:useBean id="customers" type="java.util.ArrayList<domain.

Customer>" scope="request"/>

<DATA_LIST>

<% for(domain.Customer c : customers) { %>

<CUSTOMER

ID="<%= c.getId() %>"

FIRST_NAME="<%= c.getFirstName() %>"

LAST_NAME="<%= c.getLastName() %>"

ADDRESS="<%= c.getAddress() %>"

LINK="/DBTestSHWithXSLT/ListCustomerOrders.do?cust_id=<%=

c.getId() %>"

/>

<% } %>

</DATA_LIST>

Listing 7: XSLT Style sheet for the customer display in the Microsoft Internet Explorer: customers.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="html" media-type="text/html"/>

<xsl:template match="/">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1"/>

<title>Customers list</title>

</head>

<body>

Registered Customers:

<table border="1">

<tr>

 <th>ID</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Address</th>

 <th>Orders</th>

</tr>

<xsl:for-each select="DATA_LIST/CUSTOMER">

<tr>

 <td><xsl:value-of select="@ID"/></td>

 <td><xsl:value-of select="@FIRST_NAME"/></td>

 <td><xsl:value-of select="@LAST_NAME"/></td>

 <td><xsl:value-of select="@ADDRESS"/></td>

 <td><a>Orders<xsl:attribute name="href"><xsl:value-of

select="@LINK"/></xsl:attribute></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Listing 8: WML style sheet for customer display

<?xml version="1.0"?><xsl:stylesheet xmlns:xsl="http://www.

w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="wml" media-type="text/vnd.wap.wml"/>

<xsl:template match="/">

<wml>

<card title="Registered Customers">

<table columns="5">

<tr>

<th>ID</th>

<th>First Name</th>

<th>Last Name</th>

<th>Address</th>

<th>Orders</th>

</tr>

<xsl:for-each select="DATA_LIST/CUSTOMER">

<tr>

<td><xsl:value-of select="@ID"/></td>

<td><xsl:value-of select="@FIRST_NAME"/></td>

<td><xsl:value-of select="@LAST_NAME"/></td>

<td><xsl:value-of select="@ADDRESS"/></td>

<td><a>Orders<xsl:attribute name="href"><xsl:value-of

select="@LINK"/></xsl:attribute></td>

</tr>

</xsl:for-each>

</table>

</card>

</wml>

</xsl:template>

</xsl:stylesheet>

• • • •

JDJ.SYS-CON.com26 November 2006

o you know what’s the main goal
of any gas station owner? To get
lots of trucking accounts. Busi-
ness from small car drivers is

worth pennies, and it gets on my nerves
to hear them ask again and again, “Five
dollars of regular, please.” Trucks are
different. They usually pump in a couple
of hundreds of gallons at a time. For
instance, here comes a flashy 18-wheeler
with a sign “Software Delivered.” These
guys ship reusable open source com-
ponents around the globe. As a former
programmer, I was trying to play it smart
by asking why they don’t just let people
download these components from the
Internet? But the smiley truckers (many
of whom used to be software developers
too) just shrug and tell me that nothing
beats personal delivery, plus the tips. If
you think about it, their ventures are
the basis of a new business model. Ten
years ago, only professional vendors
would create and sell well-documented,
working software. Then, independent de-
velopers started writing code jointly, but
since they did not bother spending time
writing documentation and testing, they
gave away their software for free, while
charging a premium for adding custom
features and explaining undocumented
ones. Now there is a new trend: deliver-
ing software to your doorsteps for tips.
This makes sense to me - most paid pro-
grammers live in Bangalore, and since
they can’t deliver, they can’t compete.
 As you might have noticed from my
previous article (http://java.sys-con.
com/read/204697.htm), I value truckers’
opinions, and this time I’ve asked them
to recommend something to use for the
development of the front end for my Gas
Station monitoring application. They
suggested Flex 2 from Adobe. I followed
their advice, and here’s how I built this
application in Flex using the declarative
GUI language MXML mixed with Action-

Script 3 and XML, which is pretty easy to
read for any Java programmer.

Developing with MXML, XML,
and ActionScript
 Our application will monitor daily
operations: gasoline sales and purchases.
The output window of this application is
pictured in Figure 1.
 We’ll read the initial gas station activi-
ties data from the XML shown in Listing 1.
 The final version of our application
will include a timer with a random data
generator that will add new messages
to the window from Figure 1, emulating
the data feed of three types of messages:
sale, purchase, and spill. In real life, I’ll be
using Java and message-oriented middle-
ware on the server, but this is beyond the
scope of this article.
 The first version of GasStation.mxml
(see Listing 2) reads and parses the data
from GSActivities.xml using this one liner:

<mx:XML id=”activities” source=”GSactivity.

xml” />

 No additional XML parsing is
required.
 Behind the scenes, Flex creates an
object with the reference variable activi-
ties, which is used as a data provider for
the data grid as follows:

<mx:DataGrid id=”messageBook” dataProv

ider=”{activities.message}” width=”100%”

height=”100%”>

 The dataProvider activities.message
represents the <message> XML element
from GSActivity.xml, which is displayed
as a row in the data grid. The curly braces
mean that our XML object is bindable,
and that the content of the XML ele-
ment <message> from Listing 1 will be
used to populate each row of the data
grid. The ActiveScript renderer function
paid(), that is being called for each row,
calculates the amount by multiplying
the number of gallons and the price per
gallon. The <mx:CurrencyFormatter> en-
sures that the calculated column “paid”
is displayed as a dollar amount.

Yakov’s Gas Station

by Yakov Fain

Creating a
Flashy Monitoring Application

D

Yakov Fain is a senior IT architect

consulting Wall Street companies.

He’s authored several Java books,

dozens of technical articles and his

blog is hugely popular. SYS-CON

Books will be releasing his latest

book, Rich Internet Applications
with Adobe Flex and Java:

Secrets of the Masters this fall.

Sun Microsystems has nominated

and awarded Yakov with the title

Java Champion. He leads the

Princeton Java Users Group.

Yakov teaches Java and Flex 2 at

New York University.

yfain@sys-con.com

Building an application in Flex using declarative GUI language MXML mixed with ActionScript 3 and XML

 Figure 1 Running GasStation1

27November 2006JDJ.SYS-CON.com

 The rest of the code in Listing 2 displays
other controls that we’ll use for filtering
and illustrating master-detail relations later
in this section.
 Note: The combobox cbMsgTypes is
populated from an array messageType,
which is marked as [Bindable] and will be
used later for filtering the messages in the
data grid. Also, since in this version we
did not define the data grid column, Paid
By, the corresponding data from the data
provider are not shown.

Adding a Collection Class
 Flex collection classes implement Ilist and
ICollectionView interfaces, which allow you
to add, remove, and update items in a col-
lection. These interfaces also have methods
for dispatching events when the data in the
underlying collection change, which be-
comes handy when you use a collection as a
data provider of one of the controls. Just add
a new element to such a collection and the
data in these controls automatically reflect
the change.
 There are several ways of using collections
as data providers, but I’ll just show you one.
 Eventually, I’ll add a middleman be-
tween the XML object and the data grid.
Now the data grid’s provider will become
an XMLListCollection built on top of
activities XML:

<mx:XML id=”activities” source=”GSactivity.

xml” />

<mx:XMLListCollection id=”msgList”

source=”{activities.message}” />

<mx:DataGrid id=”messageBook” dataProvider=”{m

sgList}”>

 Just recompile and run the application
again – it will display the same window as
in Figure 1.

Filtering
 The next step is to allow the user
to filter data by the octane (the check
boxes) or the message type (the combo
box). Let’s add a function init() that will
be called on by the applicationCom-
plete event to assign the filter function
filterMessages() to the collection, and
perform filtering. For Java programmers
this line is a bit unusual:

msgList.filterFunction=filterMessages;

 In Flex, you can assign the name of the
function to an object’s property and execute

it. The filtering will happen when we call the
function refresh() on the collection.

<mx:Application xmlns:mx=”http://www.adobe.com/2006/

mxml”

 backgroundColor=”#e0e0FF” applicationComplete=”ini

t()”>

…

 private function init():void {

 // assign the filter function

 msgList.filterFunction=filterMessages;

 // perform filtering

 msgList.refresh();

 }

 private function filterMessages(item:

 Object):Boolean{

 // Check every checkbox and the com

 bobox and

 // populate the datagrid with rows

 that match

 // selected criteria

 if (item.octane==”87” && this.cbx87.selected)

 return true;

 if (item.octane==”89” && this.cbx89.selected)

 return true;

 if (item.octane==”93” && this.cbx93.selected)

 return true;

 return false;

 }

 Run the application after making these
changes, and you’ll see an empty table on
the screen. This is because, when creation
of the application was complete, Flash VM
called the method init, which assigned the
filter function to our XMLListCollection,
and then refresh() applied this filter to the
each XML node of our collection. Since
no checkbox was selected, the function
filterMessages correctly returned false to
each node, leaving the datagrid empty.
To fix this, let’s make a slight change in
the checkboxes so they will be initially
checked off:

 <mx:CheckBox id=”cbx93” label=”93”

selected=”true”/>

 <mx:CheckBox id=”cbx89” label=”89”

selected=”true”/>

 <mx:CheckBox id=”cbx87” label=”87”

selected=”true”/>

 Now the program will show all the rows
again. Try to uncheck the boxes – nothing
happens, because the application doesn’t
know that it needs to re-apply the filter
function to the msgList again. This is an

easy fix – let’s refresh the msgList on each
click on the checkbox:

<mx:CheckBox id=”cbx93” label=”93”

selected=”true” click=”msgList.refresh()”/>

<mx:CheckBox id=”cbx89” label=”89”

selected=”true” click=”msgList.refresh()”/>

<mx:CheckBox id=”cbx87” label=”87”

selected=”true” click=”msgList.refresh()”/>

 Filtering by octane number is done. By
adding the code snippet below to the begin-
ning of the filterMessages() function, you’ll
engage filtering by message type according
to the combobox selection:

if (cbMsgTypes.selectedLabel !=”all” &&

 item.@msgType!=c

bMsgTypes.selectedLabel){

 return false;

}

 Please note the @ sign. This is how you
access XML attributes (see Listing 1) using
E4X notation. The XML elements are ac-
cessed using a regular dot notation.

Master-Details Relationships
 The turnover rate at my gas station is
pretty high, and I often need to teach new
gas attendants how to react to different
messages when I’m away. So let’s add some
help to new employees by populating the
Required Actions text area, based on the
selected message type. This is a typical mas-
ter-detail relationship task, where the data
grid with messages is “the master,” and the
text box shows details.
 We’ll start with creating an actions.xml file
where we store recommended actions for
each message type (see Listing 3).
 To read and parse this file into an XML ob-
ject, we need to write yet another one liner:

<mx:XML id=”msgTypes” source=”MessageTypes.xml”

/>

 The next step is to specify that selecting
a different row in a datagrid should call
the function that finds and displays an
appropriate message from MessageTypes.
xml. Again, E4X makes this job a breeze:

private function getAction():void {

 txtAction.text=

 msgTypes.message.(@type==messageBook.

selectedItem.@msgType).actions;

}

JDJ.SYS-CON.com28 November 2006

 The expression msgTypes.
message.(@type==messageBook.
selectedItem.@msgType) means the
following: select the XML <message>
element, which has an attribute type the
same as in the selected row in the da-
tagrid in column @msgType. When this
XML element is identified, assign its <ac-
tions> value to the text area txtAction.
 As I stated earlier, changing the
selected row in the data grid should
initiate the getAction() function call.
Let’s modify the declaration and add
the change event processing:

 <mx:DataGrid id=”messageBook”

dataProvider=”{msgList}” width=”100%”

 height=”100%”

change=”getAction()”>

 If you compile and run this program,
then click on a row in a data grid, the ac-
tion text box will be populated, as shown
in Figure 2.
 We’re almost there. Why almost? Be-
cause if the user starts filtering the data
by octane or a message type, the actions
text field won’t be cleaned. To fix this, let’s
create our own function refreshData()

that will not only refresh the XMLListCol-
lection, but also clean the text field:

private function refreshData():void{

 msgList.refresh();

 txtAction.text=””;

}

 Don’t forget to replace all calls to
msgList.refresh() with refreshData().

Adding a Data Feed
 In the real world, all the messages
would be pushed to our application
by some kind of a messaging program.
Another possibility is to have the gas
station front end program poll the data
during specified intervals from a server-
side program that can be written as a JSP,
ASP, PHP, or whatever else can bake an
HTTPResponse. I’ve shown an example
of Flex-JSP communication at http://
webddj.sys-con.com/read/264915.htm.
For simplicity, we’ll emulate a real-time
data feed by using a random number-
generator and a timer that will add items
to our msgList collection at specified time
intervals. Since the data collection will be
constantly receiving new data, the output

window should reflect this by adding new
rows into the data grid. Listing 4 has the
final code of the application.
 This version of the application was
built based on the XML data feed, not
because it’s the best solution for these
kinds of applications, but rather to
introduce the reader to the ease of XML
parsing with E4X. If the speed of your
data feed is crucial, or, as a Java program-
mer you’d like to have more control over
the data, use ActionScript objects as a
data feed and ArrayCollection instead of
XMLListCollection. This object should
define getters providing data for all data
grid columns, including the calculated
amount for the column Paid. Keeping
calculations in the function paid() is not
a good idea because the so-called label
function is called every time the program
inserts a new element into the underly-
ing XML collection. Flash repaints each
visible data grid row upon each insertion
of a new gas transaction, which means
the paid amounts for each visible row
will be recalculated.
 Granted, you can create simple proto-
type applications in Flex with few lines of
code, but let’s not fool ourselves - making
efficient applications still requires pro-
gramming, such as in good old Java. To
see this application in action, just point
your Web browser at http://samples.fara-
ta systems.com/gasstation/GasStation3.
html. Adobe Flash Player 9 is required to
run this application, but if you don’t have
it installed, my HTML will automatically
detect it - just follow the prompts and it’ll
be installed pretty quickly.
 For a bit more advanced Flex-Java ap-
plication read the article “Rich Internet
Applications with Adobe Flex 2 and Java”
at http://java.sys-con.com/read/210991.
htm.
 In the past, I used only Java for all
my programming needs. But as the me-
dieval saying goes, if the only tool you
have is a gasoline hose, every problem
looks like a car tank. These days are
gone, and now I’m using Java on the
server-side and Adobe Flex as a tool for
building Rich (as in Bill Gates) Internet
Applications.

Yakov’s Gas Station

 Figure 2 Populating the required actions field

Our application will monitor daily operations:
gasoline sales and purchases”“

29November 2006JDJ.SYS-CON.com

Listing 1: GSActivities.xml
<messages>

 <message msgType=”sale”>

 <transID>1234</transID>

 <octane>87</octane>

 <price>2.50</price>

 <gallons>10.2</gallons>

 <paidby>MC</paidby>

 </message>

 <message msgType=”sale”>

 <transID>1035</transID>

 <octane>89</octane>

 <price>2.69</price>

 <gallons>14.5</gallons>

 <paidby>Cash</paidby>

 </message>

 <message msgType=”spill”>

 <transID>2301</transID>

 <octane>93</octane>

 <price>2.99</price>

 <paidby></paidby>

 <gallons>17.3</gallons>

 </message>

</messages>

Listing 2: GasStation1.mxml
<?xml version=”1.0” encoding=”utf-8”?>

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” backgroundColo

r=”#e0e0FF”>

<mx:XML id=”activities” source=”GSactivity.xml” />

 <mx:Canvas x=”10” y=”10” width=”100%” height=”100%”>

 <mx:HBox x=”10” y=”20” width=”100%” height=”30”>

 <mx:CheckBox id=”cbx93” label=”93”/>

 <mx:CheckBox id=”cbx89” label=”89”/>

 <mx:CheckBox id=”cbx87” label=”87”/>

 <mx:Label text=”Msg.Type” />

 <mx:ComboBox id=”cbMsgTypes” width=”117”

 dataProvider=”{messageType}

”></mx:ComboBox>

 </mx:HBox>

 <mx:VBox x=”10” y=”64” height=”100%” width=”100%”>

 <mx:Label text=”Activity” width=”100%” fontSize=”15”/>

 <mx:DataGrid id=”messageBook” dataProvider=”{activities.message}”

width=”100%”

 height=”100%”>

 <mx:columns>

 <mx:DataGridColumn headerText=”Message Type”

dataField=”@msgType”/>

 <mx:DataGridColumn headerText=”Transaction ID” dataField=”transID”/>

 <mx:DataGridColumn headerText=”Octane” dataField=”octane”/>

 <mx:DataGridColumn headerText=”Price per gal.” dataField=”price”/>

 <mx:DataGridColumn headerText=”Amount(gal.)” dataField=”gallons”/>

 <mx:DataGridColumn headerText=”Paid” labelFunction=”paid”/>

 </mx:columns>

 </mx:DataGrid>

 <mx:Label text=”Required actions” fontSize=”15” />

 <mx:TextArea id=”txtAction” width=”100%”/>

 </mx:VBox>

 </mx:Canvas>

 <!--Defining USD formatting -->

 <mx:CurrencyFormatter id=”usdFormatter” precision=”2”

 currencySymbol=”$” useThousandsSeparator=”false”

alignSymbol=”left” />

 <mx:Script>

 <![CDATA[

 //Data for the Message type combo

 [Bindable]

 private var messageType: Array = [“all”,”sale”, “spill”, “pur-

chase”];

 private function paid(item:Object, column:DataGridColumn):String {

 // calculate total gain/loss

 var total:Number=Number(item.gallons)* Number(item.price);

 if (item.@msgType!=”sale”){

 total*=-1;

 }

 return “”+usdFormatter.format(total); //USD formatting

 }

]]>

 </mx:Script>

</mx:Application>

Listing 3: MessageTypes.xml
<MessageTypes>

 <message type=”sale”>

<description>Sale of gasoline products</description>

 <actions>Sale is good news. No action required

 </actions>

 </message>

 <message type=”purchase”>

 <description>Purchase of gasoline products from suppliers</descrip-

tion>

 <actions>If the gas station owner is not on premises, please call

him at 212-

 123-4567. Otherwise no actions is required

 </actions>

 </message>

 <message type=”spill”>

 <description>Spill of gasoline products on the ground</description>

 <actions> Get a bucket of sand and cover the mess. Expect to

receive smaller

 pay check this week.

 </actions>

 </message>

</MessageTypes>

Listing 4: GasStation3.mxml
<?xml version=”1.0” encoding=”utf-8”?>

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

 backgroundColor=”#e0e0FF” applicationComplete=”init()”>

<mx:XML id=”msgTypes” source=”MessageTypes.xml” />

<mx:XML id=”activities” source=”GSactivity.xml” />

<mx:XMLListCollection id=”msgList” source=”{activities.message}” />

 <mx:Canvas x=”10” y=”10” width=”100%” height=”100%”>

 <mx:HBox x=”10” y=”20” width=”100%” height=”30”>

 <mx:CheckBox id=”cbx93” label=”93” selected=”true”

click=”refreshData()”/>

 <mx:CheckBox id=”cbx89” label=”89” selected=”true”

click=”refreshData()”/>

 <mx:CheckBox id=”cbx87” label=”87” selected=”true”

click=”refreshData()”/>

 <mx:Label text=”Msg.Type” />

 <mx:ComboBox id=”cbMsgTypes” width=”117” dataProvider=”{messageType}”

>

 <mx:change>refreshData()</mx:change>

 </mx:ComboBox>

 </mx:HBox>

 <mx:VBox x=”10” y=”64” height=”100%” width=”100%”>

 <mx:Label text=”Activity” width=”100%” fontSize=”15”/>

JDJ.SYS-CON.com30 November 2006 c y n e r g y s y s t e m s . c o m

Unlock your potential with the help of industry
leaders in Rich Internet Application development.
10 Years. 1400+ Customers. Your app starts here.

THE LEADERS
IN RIA DEVELOPMENT
SERVICES

INCREDIBLE APPLICATIONS
PASSIONATE USERS
PROVEN SUCCESS

Yakov’s Gas Station

 <mx:DataGrid id=”messageBook” dataProvider=”{msgList}” width=”100%”

 height=”100%”

change=”getAction()”>

 <mx:columns>

 <mx:DataGridColumn headerText=”Message Type” dataField=”@msgType”/>

 <mx:DataGridColumn headerText=”Transaction ID”

dataField=”transID”/>

 <mx:DataGridColumn headerText=”Octane” dataField=”octane”/>

 <mx:DataGridColumn headerText=”Price per gal.” dataField=”price”/>

 <mx:DataGridColumn headerText=”Amount(gal.)” dataField=”gallons”/>

 <mx:DataGridColumn headerText=”Paid” labelFunction=”paid”/>

 <mx:DataGridColumn headerText=”Paid by” dataField=”paidby”/>

 </mx:columns>

 </mx:DataGrid>

 <mx:Label text=”Required actions” fontSize=”15” />

 <mx:TextArea id=”txtAction” width=”100%”/>

 </mx:VBox>

 </mx:Canvas>

 <!--Defining USD formatting -->

 <mx:CurrencyFormatter id=”usdFormatter” precision=”2”

 currencySymbol=”$” useThousandsSeparator=”false”

alignSymbol=”left” />

 <!-- Gallons Amount formating with 2 digits after dec.point -->

 <mx:NumberFormatter id=”numberFormatter” precision=”2”/>

 <mx:Script>

 <![CDATA[

 //Message type combo data

 [Bindable]

 private var messageType: Array = [“all”,”sale”, “spill”, “pur-

chase”];

 import mx.collections.*;

 private var sortMessages:Sort;

 [Bindable]

 private var grandTotalSale:Number=0;

 private function init():void {

 // assign the filter function

 msgList.filterFunction=filterMessages;

 // perform filtering

 refreshData();

 // emulating message feed in specified intervals

 var myTimer:Timer = new Timer(5000, 0); // every 5 sec

 myTimer.addEventListener(“timer”, addMessage);

 myTimer.start();

 }

 private function filterMessages(item:Object):Boolean{

 // filter by message types

 if (cbMsgTypes.selectedLabel !=”all” &&

 item.@msgType!=cbMsgTypes.selectedLabel){

 return false;

 }

 // Check every checkbox and the combobox and

 // populate the datagrid with rows that match

 // selected criteria

 if (item.octane==”87” && this.cbx87.selected)

 return true;

 if (item.octane==”89” && this.cbx89.selected)

 return true;

 if (item.octane==”93” && this.cbx93.selected)

 return true;

 return false;

 }

 private function paid(item:Object, column:DataGridColumn):String {

 // calculate total gain/loss. Label function is not

 // the best place for calculations as itʼs being called

 // on each change of the underlying collection

 var total:Number=Number(item.gallons)* Number(item.price);

 if (item.@msgType!=”sale”){

 total*=-1;

 }

 return “”+usdFormatter.format(total); //USD formatting

 }

 private function getAction():void {

 txtAction.text=msgTypes.message.(@type==messageBook.

selectedItem.@msgType).actions;

 }

 private function refreshData():void{

 msgList.refresh();

 txtAction.text=””;

 }

 private function addMessage(event:TimerEvent):void{

 // create and add one message with randomly-generated

 // values to the collection

 var newNode:XML = new XML();

 var transID:String=Math.round(Math.random()*5000).toString();

 var octanes: Array = [“87”, “89”, “93”];

 var octaneIndex:Number=Math.round(Math.random()*2);

 var octane:String=octanes[octaneIndex];

 var prices: Array = [2.49, 2.69, 2.99];

 var price:Number=prices[octaneIndex];

 var msgTypes: Array = [“sale”, “purchase”, “spill”];

 var msgType:String=msgTypes[Math.round(Math.random()*2)];

 var payTypes: Array = [“MC”, “Visa”, “Cash”];

 var payType:String=msgType==”sale”?payTypes[Math.round(Math.

random()*2)]:””;

 var gals:String=(numberFormatter.format(Math.random()*50).

toString());

 newNode=<message msgType={msgType}>

 <transID>{transID}</transID>

 <octane>{octane}</octane>

 <price>{price}</price>

 <gallons>{gals}</gallons>

 <paidby>{payType}</paidby>

 </message>;

 // adding new messages always on top

 activities.insertChildBefore(activities.message[0], newNode);

 }

]]>

 </mx:Script>

</mx:Application>

c y n e r g y s y s t e m s . c o m

Unlock your potential with the help of industry
leaders in Rich Internet Application development.
10 Years. 1400+ Customers. Your app starts here.

THE LEADERS
IN RIA DEVELOPMENT
SERVICES

INCREDIBLE APPLICATIONS
PASSIONATE USERS
PROVEN SUCCESS

“Since we started using
WindowTester, tests that
took 2–3 weeks to write
previously can now be
done in 2–3 days.”

—Steve Tocco,
BEA Workshop

Director of Quality
Assurance

However, the team found that
creating and running tests still did
not meet their needs. The group
decided that developing and main-
taining their own test harness was
not their core competency and they
did not want to devote extensive re-
sources to creating a test infrastruc-
ture. Tocco states, “To meet a rapid
release schedule, the test suite must
be optimized as we can’t afford false
negatives or instabilities drawing
precious resources away from our
deliverables. Even more, tests need
to be authored rapidly as we try to
find optimizations in our schedules
while not compromising quality for
our customers. We weren’t getting
that in any form before. Our team
felt we weren’t agile enough to
meet the new release timelines—we
simply don’t have time now to rely
on manual tests alone.”

Moving to WindowTester
for Automated GUI Testing

The BEA Workshop team began
looking at tools that could auto-
mate the testing of GUI elements
of their Eclipse-based applica-
tions. They chose RCP Developer
from Instantiations and are
converting their test suite to use its
WindowTester component. They
selected a commercial product
even though there are open source
alternatives available because of
the tools’ ease of use as well as
Instantiations’ support, responsive-
ness, and professional documenta-
tion. According to Bill Roth, VP of
BEA Workshop Unit, “In terms
of our cost of investment in the
WindowTester tool, we believe the
cost of the licensing is greatly worth
the enhancement and efficiency
gained so far.”

How Testing Has Changed after
Implementing WindowTester

When evaluating RCP
Developer and WindowTester,
the BEA Workshop for WebLogic
team found that it took about two

months to achieve a 40% line cov-
erage in the product from a code
coverage perspective. According
to Tocco, “Since we started using
WindowTester, tests that took two
to three weeks to write previously
can now be done in two to three
days. It is much faster to get a test
developed and running. In addi-
tion, we have a higher stability rate
than before with a extraordinary
pass rates in our automated regres-
sion tests. This is fantastic. It lets
us spend our energy building the
product, not chasing test issues.”
The BEA Workshop for WebLogic
team also found that WindowTester
can handle a heavy test load. The
team currently runs over 300 tests.
Some of the tests are quite broad,
with multi-step lengthy testing sce-
narios. This is a 20 times increase
over what was in the release two
years ago for IDE automation.

Future: Full Migration to
WindowTester

The BEA Workshop for WebLogic
team plans a complete migration
away from the old test harness for
the IDE in six months. The team
intends to use the WindowTester
component of RCP Developer as the
sole tool for automated IDE testing
tool in Eclipse by the end of 2006.

Summary
Moving to Instantiations RCP

Developer and its WindowTester
functionality has allowed the BEA
Workshop for WebLogic group
to drastically cut the time it takes
to generate new GUI tests. The
move to WindowTester has saved
the group both time and money
allowing them to focus on devel-
oping their product rather than
creating and maintaining a test
infrastructure.

About BEA www.bea.com
BEA Systems is a company founded in 1995 that specializes in enterprise infrastructure
software, and has 77 offices in 37 countries. BEA Systems, Inc. is a world leader in enterprise
infrastructure software, delivering powerful standards-based platforms for building enterprise
applications and managing Service-Oriented Architectures even in heterogeneous IT environ-
ments. Customers depend on BEA Tuxedo®, WebLogic®, and AquaLogic™ product lines to reduce
IT complexity, leverage existing resources, and speed the delivery of new services. BEA also
provides support for Blended strategies that combine Open Source and commercial software
to best suit the needs of business and IT. With over 15,000 customers including the majority of
the Fortune Global 500, BEA provides the technology, solutions and services to help companies
achieve a state of Business LiquidITy™ where enterprise assets are freed up to deliver maximum
business value.

About Instantiations www.instantiations.com
Instantiations, Inc. provides leading-edge software products, services and technologies for
Eclipse, Java and Smalltalk. Instantiations offers professional development environments
and software products that integrate seamlessly with the latest development platforms.
Instantiations is a member of the Eclipse Foundation and offers a line of products for Eclipse,
Rational Application Developer, IBM WebSphere Studio and MyEclipse. Based in Portland, Ore.,
Instantiations was founded in 1997 by a team of internationally recognized pioneers in the field
of component software technology.

About Eclipse www.eclipse.org
Eclipse is an open source community whose projects are focused on providing an extensible
development platform and application frameworks for building software. Eclipse is an open
source community whose projects are focused on providing a vendor-neutral open develop-
ment platform and application frameworks for building software. The Eclipse Foundation is a
not-for-profit corporation formed to advance the creation, evolution, promotion, and support
of the Eclipse Platform and to cultivate both an open source community and an ecosystem of
complementary products, capabilities, and services.

© Copyright 2006
Instantiations, Inc.
RCP Developer, SWT Designer,
WindowTester, Help Composer and
RCP Packager are trademarks of
Instantiations. All other trademarks
mentioned are the property of their
respective owners.

This Case Study
is available online at
www.instantiations.com/
rcpdeveloper/resources/
casestudy-bea.pdf

“In terms of our cost
of investment in the
WindowTester tool, we
believe the cost of the
licensing is greatly worth
the enhancement and
efficiency gained so far.”

—Bill Roth,
VP of

BEA Workshop
Unit

BEA Systems and
Instantiations have had a
unique relationship while
working in the Eclipse

ecosystem. BEA is a strategic
member of the Eclipse Foundation,
has a representative on the Eclipse
Board, and is an active participant
in the Eclipse Web Tools project.
Instantiations is a long time Eclipse
member company, has a represen-
tative on the Eclipse Foundation
Board, and has had a number of
committers on Eclipse projects. The
work delivered by Instantiations
in the Eclipse Pollinate project
provided early proof-of-concept
technology for BEA’s Eclipse-based
tooling.

BEA Workshop makes devel-
oping Java applications easier by
allowing Eclipse developers to
quickly create, debug and test SOA
components, Web Services, Web
applications, BEA WebLogic Portal
applications, and enable Service-
Oriented Architecture (SOA) solu-
tions. BEA Workshop is based on
the Eclipse Open Source Integrated
Development Environment (IDE).
Eclipse includes a Rich Client
Platform (RCP) layer that makes it
easy to develop applications with
extensive GUI capabilities.

BEA also utilizes other key
Eclipse-based tools to develop
and test their own applications.
For example, BEA replies heavily
on the WindowTester component
of the RCP Developer software
from Instantiations to automate
the testing of GUI elements. RCP

Developer is a software develop-
ment product that accelerates the
creation of Eclipse RCP applications
by providing tools for constructing
and testing graphical user interfaces,
composing Help documentation and
packaging rich client applications
for deployment. We will explore
how BEA is using the WindowTester
component of RCP Developer in the
remainder of this case study.

Development Challenge
Three years ago, Workshop’s auto-

mated IDE-based testing was from a
home-grown testing infrastructure.
BEA is shifting its product release
schedule so releases will be deliv-
ered in 1/6th the time previously
required. According to Steve Tocco,
BEA Workshop Director of Quality
Assurance, “Our internal IDE test-
ing had inadequate code coverage
numbers with 1/20th the number
of tests our current automated test
suite contains. We determined that
the amount of intermittent failures,
the inadequate automated coverage,
as well as the cost to implement tests

was prohibitive in getting prod-
ucts to market quickly.” The BEA
Workshop group needed a better
solution for automated testing of
their application GUIs. They chose
Instantiations RCP Developer and
its innovative WindowTester func-
tionality to meet this need.

Solution: Using WindowTester
for Automated GUI Testing
Testing History

In addition to the in-house
testing infrastructure used by BEA
Workshop group, they previously
used and evaluated other commer-
cial off-the-shelf products. While
some of the tools provided a quick-
click and record of Swing tests,
they would not address the needs
raised as Workshop moved to the
Eclipse infrastructure in 2004. They
researched options and decided to
initially create their own test suite
using the open source Abbot SWT
GUI testing framework. For the
product release that shipped in July
06, they used the Abbot structure
for testing.

Components of RCP Developer™ 2.0

SWT Designer™ automatically generates Java code from a
powerful and intuitive visual designer
WindowTester™ records events and automatically generates GUI tests
based on the JUnit standard
Help Composer™ streamlines the creation of documentation
that is fully compatible with the Eclipse Help system
RCP Packager™ quickly automates deployment by generating
a flexible SWT-based Installer

❖

❖

❖

❖

BEA Uses RCP Developer™ to Improve Quality
and to Save Time & Money
BEA relies heavily on the WindowTester™ component
of the RCP Developer™ software from Instantiations
to automate testing of GUI elements

CASE STUDY

“Since we started using
WindowTester, tests that
took 2–3 weeks to write
previously can now be
done in 2–3 days.”

—Steve Tocco,
BEA Workshop

Director of Quality
Assurance

However, the team found that
creating and running tests still did
not meet their needs. The group
decided that developing and main-
taining their own test harness was
not their core competency and they
did not want to devote extensive re-
sources to creating a test infrastruc-
ture. Tocco states, “To meet a rapid
release schedule, the test suite must
be optimized as we can’t afford false
negatives or instabilities drawing
precious resources away from our
deliverables. Even more, tests need
to be authored rapidly as we try to
find optimizations in our schedules
while not compromising quality for
our customers. We weren’t getting
that in any form before. Our team
felt we weren’t agile enough to
meet the new release timelines—we
simply don’t have time now to rely
on manual tests alone.”

Moving to WindowTester
for Automated GUI Testing

The BEA Workshop team began
looking at tools that could auto-
mate the testing of GUI elements
of their Eclipse-based applica-
tions. They chose RCP Developer
from Instantiations and are
converting their test suite to use its
WindowTester component. They
selected a commercial product
even though there are open source
alternatives available because of
the tools’ ease of use as well as
Instantiations’ support, responsive-
ness, and professional documenta-
tion. According to Bill Roth, VP of
BEA Workshop Unit, “In terms
of our cost of investment in the
WindowTester tool, we believe the
cost of the licensing is greatly worth
the enhancement and efficiency
gained so far.”

How Testing Has Changed after
Implementing WindowTester

When evaluating RCP
Developer and WindowTester,
the BEA Workshop for WebLogic
team found that it took about two

months to achieve a 40% line cov-
erage in the product from a code
coverage perspective. According
to Tocco, “Since we started using
WindowTester, tests that took two
to three weeks to write previously
can now be done in two to three
days. It is much faster to get a test
developed and running. In addi-
tion, we have a higher stability rate
than before with a extraordinary
pass rates in our automated regres-
sion tests. This is fantastic. It lets
us spend our energy building the
product, not chasing test issues.”
The BEA Workshop for WebLogic
team also found that WindowTester
can handle a heavy test load. The
team currently runs over 300 tests.
Some of the tests are quite broad,
with multi-step lengthy testing sce-
narios. This is a 20 times increase
over what was in the release two
years ago for IDE automation.

Future: Full Migration to
WindowTester

The BEA Workshop for WebLogic
team plans a complete migration
away from the old test harness for
the IDE in six months. The team
intends to use the WindowTester
component of RCP Developer as the
sole tool for automated IDE testing
tool in Eclipse by the end of 2006.

Summary
Moving to Instantiations RCP

Developer and its WindowTester
functionality has allowed the BEA
Workshop for WebLogic group
to drastically cut the time it takes
to generate new GUI tests. The
move to WindowTester has saved
the group both time and money
allowing them to focus on devel-
oping their product rather than
creating and maintaining a test
infrastructure.

About BEA www.bea.com
BEA Systems is a company founded in 1995 that specializes in enterprise infrastructure
software, and has 77 offices in 37 countries. BEA Systems, Inc. is a world leader in enterprise
infrastructure software, delivering powerful standards-based platforms for building enterprise
applications and managing Service-Oriented Architectures even in heterogeneous IT environ-
ments. Customers depend on BEA Tuxedo®, WebLogic®, and AquaLogic™ product lines to reduce
IT complexity, leverage existing resources, and speed the delivery of new services. BEA also
provides support for Blended strategies that combine Open Source and commercial software
to best suit the needs of business and IT. With over 15,000 customers including the majority of
the Fortune Global 500, BEA provides the technology, solutions and services to help companies
achieve a state of Business LiquidITy™ where enterprise assets are freed up to deliver maximum
business value.

About Instantiations www.instantiations.com
Instantiations, Inc. provides leading-edge software products, services and technologies for
Eclipse, Java and Smalltalk. Instantiations offers professional development environments
and software products that integrate seamlessly with the latest development platforms.
Instantiations is a member of the Eclipse Foundation and offers a line of products for Eclipse,
Rational Application Developer, IBM WebSphere Studio and MyEclipse. Based in Portland, Ore.,
Instantiations was founded in 1997 by a team of internationally recognized pioneers in the field
of component software technology.

About Eclipse www.eclipse.org
Eclipse is an open source community whose projects are focused on providing an extensible
development platform and application frameworks for building software. Eclipse is an open
source community whose projects are focused on providing a vendor-neutral open develop-
ment platform and application frameworks for building software. The Eclipse Foundation is a
not-for-profit corporation formed to advance the creation, evolution, promotion, and support
of the Eclipse Platform and to cultivate both an open source community and an ecosystem of
complementary products, capabilities, and services.

© Copyright 2006
Instantiations, Inc.
RCP Developer, SWT Designer,
WindowTester, Help Composer and
RCP Packager are trademarks of
Instantiations. All other trademarks
mentioned are the property of their
respective owners.

This Case Study
is available online at
www.instantiations.com/
rcpdeveloper/resources/
casestudy-bea.pdf

“In terms of our cost
of investment in the
WindowTester tool, we
believe the cost of the
licensing is greatly worth
the enhancement and
efficiency gained so far.”

—Bill Roth,
VP of

BEA Workshop
Unit

BEA Systems and
Instantiations have had a
unique relationship while
working in the Eclipse

ecosystem. BEA is a strategic
member of the Eclipse Foundation,
has a representative on the Eclipse
Board, and is an active participant
in the Eclipse Web Tools project.
Instantiations is a long time Eclipse
member company, has a represen-
tative on the Eclipse Foundation
Board, and has had a number of
committers on Eclipse projects. The
work delivered by Instantiations
in the Eclipse Pollinate project
provided early proof-of-concept
technology for BEA’s Eclipse-based
tooling.

BEA Workshop makes devel-
oping Java applications easier by
allowing Eclipse developers to
quickly create, debug and test SOA
components, Web Services, Web
applications, BEA WebLogic Portal
applications, and enable Service-
Oriented Architecture (SOA) solu-
tions. BEA Workshop is based on
the Eclipse Open Source Integrated
Development Environment (IDE).
Eclipse includes a Rich Client
Platform (RCP) layer that makes it
easy to develop applications with
extensive GUI capabilities.

BEA also utilizes other key
Eclipse-based tools to develop
and test their own applications.
For example, BEA replies heavily
on the WindowTester component
of the RCP Developer software
from Instantiations to automate
the testing of GUI elements. RCP

Developer is a software develop-
ment product that accelerates the
creation of Eclipse RCP applications
by providing tools for constructing
and testing graphical user interfaces,
composing Help documentation and
packaging rich client applications
for deployment. We will explore
how BEA is using the WindowTester
component of RCP Developer in the
remainder of this case study.

Development Challenge
Three years ago, Workshop’s auto-

mated IDE-based testing was from a
home-grown testing infrastructure.
BEA is shifting its product release
schedule so releases will be deliv-
ered in 1/6th the time previously
required. According to Steve Tocco,
BEA Workshop Director of Quality
Assurance, “Our internal IDE test-
ing had inadequate code coverage
numbers with 1/20th the number
of tests our current automated test
suite contains. We determined that
the amount of intermittent failures,
the inadequate automated coverage,
as well as the cost to implement tests

was prohibitive in getting prod-
ucts to market quickly.” The BEA
Workshop group needed a better
solution for automated testing of
their application GUIs. They chose
Instantiations RCP Developer and
its innovative WindowTester func-
tionality to meet this need.

Solution: Using WindowTester
for Automated GUI Testing
Testing History

In addition to the in-house
testing infrastructure used by BEA
Workshop group, they previously
used and evaluated other commer-
cial off-the-shelf products. While
some of the tools provided a quick-
click and record of Swing tests,
they would not address the needs
raised as Workshop moved to the
Eclipse infrastructure in 2004. They
researched options and decided to
initially create their own test suite
using the open source Abbot SWT
GUI testing framework. For the
product release that shipped in July
06, they used the Abbot structure
for testing.

Components of RCP Developer™ 2.0

SWT Designer™ automatically generates Java code from a
powerful and intuitive visual designer
WindowTester™ records events and automatically generates GUI tests
based on the JUnit standard
Help Composer™ streamlines the creation of documentation
that is fully compatible with the Eclipse Help system
RCP Packager™ quickly automates deployment by generating
a flexible SWT-based Installer

❖

❖

❖

❖

BEA Uses RCP Developer™ to Improve Quality
and to Save Time & Money
BEA relies heavily on the WindowTester™ component
of the RCP Developer™ software from Instantiations
to automate testing of GUI elements

CASE STUDY

JDJ.SYS-CON.com34 November 2006

unctional testing, or integra-
tion testing, is concerned
with the entire system, not
just small pieces (or units) of

code. It involves taking features that
have been tested independently,
combining them into components,
and verifying if they work together
as expected. For Java, this testing is
typically performed using the JUnit
framework.
 Most Java developers are well-
versed in logistical test construction
matters, such as how to develop a
test fixture, add test methods with
assertions, use the setup method for
initialization, and so forth. However,
many Java developers could benefit
from a deeper understanding of
how to develop a functional test
suite that effectively verifies
whether code works as designed.
 This article introduces and
demonstrates the following
strategy for building an effective
JUnit functional test suite:
• Identify use cases that cover all

actions that your program should
be able to perform.

• Identify the code's entry points –
central pieces of code that exercise
the functionality that the code as a
whole is designed to undertake.

• Pair entry points with the use
cases that they implement.

• Create test cases by applying
the initialize/work/check
procedure.

• Develop runtime event diagrams
and use them to facilitate testing.

 I demonstrate these strategies by
applying them to source code from
the Saxon project (http://saxon.
sourceforge.net/), an XML utility kit
that can process XPath, XQuery, and
XSLT. This library is built from ap-
proximately 50,000 lines of Java code;
it is open source, well written, and
well documented.

Identifying Use Cases
 There are two balancing goals of
functional testing: coverage and granu-
larity. In order to be complete, function-
al testing must cover each function that
the program provides, and it must do
so at a level that separates the tests into
their component parts. Tests can rely
on each other, but no single test should
verify two things.
 The first step to creating a com-
prehensive functionality test suite
is assembling a list of all the actions
that your program should be able to
perform. This can be further codified
by specifying use cases that model a
supported action that can be taken by

an outside actor (a human
user or another

software
component) that
performs work inside the system.
 A typical enterprise Java applica-
tion already has several documents
detailing the requirements of the
various users. These may include use
case specifications, nonfunctional
requirements specifications, test case
specifications, user interface design
documents, mockups, user profiles,
and various additional artifacts.
Simple applications typically have one
simple text document that details all
relevant requirements.
 Using these documents, you can
quickly identify use cases that should be
tested. Each test case describes a sce-
nario that can be exercised through the
application. A good practice is to aim for
similar-sized scenarios that verify one
and only one functionality – larger sce-
narios can be broken into smaller ones

along the lines of the functionalities that
they verify.
 There are many ways to model use
cases, but the simplest is in terms of in-
put/output pairs. In Saxon’s query class,
the simplest use case is passing a query
file, a query, and a path to an output
file. The output file is created as needed
and filled with the result of running the
query in the query file.
 More complex use cases may take
more input or produce more output.
The defining point, however, is that
use cases do not specify or care how
the work is performed internally.
They treat the software as a “black
box” inside of which all work could be
performed by gnomes, as long as it’s
performed. This is an important point
because the use cases as input/output

pairs translate very easily and
very directly into test cases,
which allows complex specifica-
tions to map into simple tests
that can verify that the required
operations work, and that
operations which should fail
actually fail.
 Defining the use cases for the
designated entry points is simple

if the class is relatively straightforward,
or if there is already a specification
document that enumerates all of the
possible class uses. If not, it might be
necessary to learn about the various
ways the class is expected to behave
(and possibly highlight confusion as to
the class’s purpose and use). Use cases
can also be extracted from the code
itself if you are willing to look for all of
the places where the code is called.
 Most likely, the class has some
rudimentary documentation, and by
supplementing this documentation
with the developers’ domain knowledge,
it should be possible to fully determine
what the class should and shouldn’t
be able to do. With this knowledge, an
appropriate set of use cases can be
developed.

Testing

by Nada daVeiga
Designing JUnit Test Cases

F

Nada daVeiga is the Product

Manager of Java Solutions

at Parasoft, where she has

been a senior member of the

Professional Services team for

two years. Nada’s background

includes development of

service-oriented architecture for

integration of rich media

applications such as Artesia

Teams, IBM Content Manager,

Stellent Content Server, and

Virage Video Logger. Nada

developed J2EE enterprise

applications and specialized in

content transport frameworks

using XML, JMS, SOAP, and

JWSDP technologies. As a

presales engineer, Nada worked

with clients such as Cisco,

Fidelity, HBO, and Time Warner.

Nada holds a bachelors degree

in computer science from the

University of California, Los

Angeles (UCLA).

Effective functional testing

35November 2006JDJ.SYS-CON.com

Translating Test Cases
 Each test case is divided into two parts: input and
expected output. The input part lists all the test case state-
ments that create variables or assign values to variables.
The expected output part indicates the expected results;
it shows either assertions or the message ‘no exception’
(when no assertions exist).
 The basic input/output format is the simplest, easiest
to understand model to follow for test cases. It follows the
pattern of normal functions (pass arguments, get return
value), and most user actions (press this button to perform
this action). The pattern, then, is to:
• Initialize: Create the environment that the test expects

to run in. The initialization code can either be in the
beginning of the test or in the setUp() method.

• Work: Call the code that is being tested, capturing
 any interesting output and recording any interesting

statistics.
• Check: Use assert statements to ensure that the code

worked as expected.

 For instance, assume that you want to test the Saxon
library’s transform class entry point. One of its use cases is
to transform an XML file into an HTML file, given an XSL
file that describes the transformation. The inputs are the
paths to the three files, and the output is the contents of
the HTML file. This translates very directly into the follow-
ing test:

 public void testXSLTransformation() {

 /* initialize the variables

 (or do this in setUp if used in many tests) */

 String processMePath = “/path/to/file.xml”;

 String stylesheetPath = “/path/to/stylesheet.xsl”;

 String outputFilePath = “/path/to/output.xml”;

 //do the work

 Transform.main(new String[] {

 processMePath,

 stylesheetPath,

 “-o”, outputFilePath });

 //check the work

 assertTrue(checkOutputFile(outputFilePath));

 }

 Each step can be as simple or complex as necessary. The
variables declared here could just as easily call methods to
obtain their values. The work could consist of several steps
that achieve the desired outcome. Moreover, the check can
sometimes be omitted when the process succeeds silently.
 The pattern is very simple and very flexible, but step
two is decidedly generic. This template gives us no
method for finding the code to be tested, or any assuranc-
es that the code is set up in a way that facilitates testing.
This is a serious concern.

Focusing Functional Tests
 The search can be narrowed to a more useful context by
identifying central pieces of code that exercise the func-
tionality that the code as a whole is designed to undertake.
These classes are considered the code’s entry points be-
cause they provide a way to jump into the system from the
outside.
 The overall goal of this process is to identify a group of
classes that provide a high-level interface to the system func-
tionality. The easier it is to use each class independently, the
better. After all, the more the class can be decoupled from its
surroundings, the easier it is to test.
 Determining what code to identify as entry points is a fairly
straightforward process. In a library of code, there are usually
a choice few entry points that control all of the library’s func-
tionality. These facade classes act as a mediator between client
code and the library, separating the developer on the outside
from the complexity of the code within. This is exactly the type
of class whose methods should be tested first.
 For instance, Saxon provides a small collection of classes
that act as a portal into the rest of the library, and thus serve
as a logical entry point. By coding to the facade classes such
as transform, configuration, and query, library client code
can use a vast number of worker classes without having to
worry about their interfaces… or even their existence. These
facade classes therefore provide a simple way to test the
system functionality using the high-level and easy-to-use
interfaces that are a sign of a good library.
 In application code, there is usually an obvious separa-
tion between modules of functionality. In some code,
these modules are segregated to the extent that they can
largely be treated as if they were each separate libraries
whose functionality can be accessed through a handful of
facade classes. These classes are the logical places to look
for high-level interfaces. A plug-in architecture will usu-
ally follow this design, in that each individual plug-in has
a simple interface that can effectively exercise the entirety
of the contained code.
 In less rigidly delineated systems, there is usually
a central point through which all activity passes. This
mediator class is often a ‘controller’ in an MVC paradigm,
and it routes requests to and from parts of the system.
The vast majority of the overall system functionality is
implemented by classes to which this controller con-
nects; consequently, these classes are prime candidates
for testing. This can be seen in Applet design, where the
class deriving from java.applet.Applet will be the central
processor of the entire code base. Depending on whether
the code is thoroughly decomposed, testing can focus on
either the Applet subclass itself, or on those classes with
which it works.
 Code between modules is also prime code to test. The
class that converts application requests into database que-
ries is a good candidate, as are similar adapter classes.

There are many ways to model use cases,
but the simplest is in terms of input/output pairs”“

JDJ.SYS-CON.com36 November 2006

 Various MVC (Model-View Controller) framework-
based components may be easier to test with other
testing frameworks, some of which extend JUnit. For
example, Struts actions are best tested using the StrutsT-
estCase extension of JUnit, server-side components like
Servlets, JSPs, and EJBs are best tested using Cactus, and
HttpUnit is the best framework for conducting black-
box Web application testing. All techniques discussed
in this article are applicable when writing tests in these
frameworks.

Moving from Use Case to Test Case
 Once the entry points have been discovered, they must
be paired with the use cases that they implement. In some
cases, this is a trivial step because the classes’ names
self-document to the point that matching is automatic: for
instance, Saxon’s transform class performs the XSL trans-
formations; the query class performs the XQuery resolu-
tions, etc.
 In other cases, the search is more difficult. Often, a use
case describes functionality that exists only as a cross-cut-
ting concern that is not exemplified in any single class;
the behavior in question is visible only when a group of
classes interacts, or when certain conditions apply. In
these cases, the test has a longer than average initializa-
tion phase, or the setUp() method can be used to provide
the requisite environment.
 The work phase, where the code is actually being called,
should be only a single line if possible. Minimizing the
contact with the tested code helps you avoid depending
on side effects and unstable implementation details.
 The test’s check phase is commonly the most complex
because it must often compensate for code that was not
written to be tested. The test may be forced to pull apart the
results to ensure that they satisfy the requirements. Occa-
sionally, the results are so difficult to obtain that multiple
steps are required to get them into a form that the test can
recognize. Both of these cases are true in the above test for
XSL transformations; the results are in a file, which must be
read into memory, and are in a complex XML format, which
must be scrutinized to ensure accuracy.
 A simpler example can be taken from Saxon. Given an
XML file and an XPath expression, Saxon can evaluate the
expression and return a list of all matches. Saxon ships
with a sample class – the XPathExample class – that does
precisely this. Paring down the interactivity, the class
resolves to this test:

 public void testXPathEvaluation() {

 //initialize

 XPathEvaluator xpe = new XPathEvaluator(

 new SAXSource(new InputSource(“/path/to/file.xml”)));

 XPathExpression findLine =

 xpe.createExpression(“/some/xpath[expression]”);

 //work

 List matches = findLine.evaluate();

 //check

 assertTrue(matches.count() > 0);

 }

 The two inputs are the two constant strings, and the
output is the list of matches, which is tested to ensure that
matches were indeed found. All the work is performed
in one line, which simply calls the method that is being
tested.
 A variation of this case is the expected behavior of XPathE-
valuator when the createExpression() method is passed null.
In this case, you can expect some error to occur because the
expression cannot be created from nothing.
 It’s a bad idea to keep the input source name and expres-
sion in the test case. Some items (server names, usernames
and passwords, etc.) should not live in the test files, which
should be configurable for the specific deployment. Rather,
design the test cases to facilitate separation of test drivers
and test data, test driver reuse over a larger set of data, and
test data reuse over a larger set of test drivers. On the other
hand, don’t over-architect a simple test case implementa-
tion. Typically, the test case specification already defines
most of the system states and allows parameter descrip-
tions for a scenario, so there’s no point in making every-
thing parameterizable in the test implementation.
 Many code sections may appear in more than one test
case. An experienced object-oriented developer will be
tempted to re-factor these and create common classes and
utility methods. In some cases, that makes a lot of sense
– for example, a logging procedure should be a common
method available for all test cases. However, be careful not
to over-engineer the tests – these Java classes are no more
than tests that are meant to validate functional behavior of
an application.
 The test cases are typically fragile. For example, if a
developer changes the location of the input file in the
testXPathEvaluation test or if the createExpression method
changes its signature, the test scripts will fail. Significant
rework and change for each test case implementation is
inevitable as an application evolves. Thus, traceability is
crucial for all test cases. If something fails later, it’s impor-
tant to be able to point the developer to the corresponding
test case specification and use case specification to pro-
mote speedy bug resolution. Therefore, test cases should
be annotated with references to the original specification
documents. This could be just a simple code comment or

Testing

Various MVC (Model-View Controller) framework-based components
may be easier to test with other testing frameworks,

some of which extend JUnit”
“

37November 2006JDJ.SYS-CON.com

a complex mechanism where each
test annotates references to the use
cases and features that it tests, and a
test failure causes a notification to be
sent to the responsible developer. The
important thing is to have the refer-
ence in the code and to maintain the
traceability.

Developing Runtime Event Diagrams
 To understand what the test covers,
you need to understand how the code
being tested functions, and how the vari-
ous static classes work together to form
the dynamic object graph that defines
the program’s state during the test.
 There are many ways to model
such behavior, including Granovet-
ter Diagrams and Object Interaction
Diagrams. The basic idea is to picto-
graphically explore the code to under-
stand what runtime parts are involved
during the test. These techniques can
all be described under the moniker
Runtime Event Diagrams because
they show what events occur while
the program is running, rather than
what events the classes could theo-
retically handle. These diagrams are
important for a number of reasons.
 First, these diagrams expose the
code in a way that can easily be
understood at a high level, and con-
sequently provide useful documenta-
tion. This documentation is different
than the documentation inlined into
the code. These diagrams show the
runtime behavior of the code, where
the operation of the code’s actual
functions takes place, and where the
system is more easily understood;
most design patterns and other ar-
chitectural decisions are much more
easily understood in terms of objects
and references than classes and fields.
 In addition, these diagrams catalog
what parts of the code are being
exercised by any given test, and
determine if that test will be affected
by future changes to arbitrary code.
When the developer is certain that
test A utilizes subsystems B, C, and D,
she is also certain that changes to B,
C, or D will necessitate testing A again
(to ensure backwards compatibility).
 A good tactic is to attempt to model
the system in as few steps as possible.
In general, the actual calls being made
are irrelevant; the important aspect
is how the system works together to

achieve the desired goal. This goal can
be achieved by using a simplified mod-
eling system that shows only general
interactions between objects, with
natural language descriptions of what
is occurring in the various interactions.
 After a Runtime Event Diagram is
drawn, it can be incorporated into
the class documentation. Note that a
few limitations of the diagrams make
them more resilient to class modifica-
tions. First, the method names are
generally not used because they may
change over time. Instead of method
names, the more general and more
easily understood natural language
descriptions are used. Second, the
diagrams are mainly about the
interaction between the parts of the
system. This is a high-level archi-
tectural design decision, and is less
likely to change over time. Lastly, the
diagram is built in terms of types, not
specific classes. As long as the general
types remain the same – which they
are likely to do to retain the proto-
cols used to interact with them – the
graphs need not be updated.
 Once the diagrams are created,
they can be used in a variety of ways.
For instance, a diagram can be used
to gain a quick overview of how a sys-
tem works and how it uses its inter-
connected parts to achieve its goals.
This is a sort of simplified UML which
describes only the system parts that
really matter at a glance: instances,
their types, the other instances which
they reference, and the work being
performed by the group.
 These diagrams can also be used
to gain insight into the system’s com-
plexity and how it could be simpli-
fied. To identify ways to simplify the
system, look for objects that are used
in the system once or twice, and in-
vestigate where they might fit better.
Also, look for repetitive tasks, and try
to encapsulate them into a method or
a class.
 However, the diagrams’ most
important use is to facilitate testing.
By encapsulating the system’s state,
the diagrams can help solve problems
that are occurring with the system.
The diagrams’ information about what
should be happening can be referenced
later when a problem appears. In this
case, it is simpler to identify what went
wrong because it is simple to com-

pare the program’s current state with
its expected state. Fixes within small
components should not change the
overall architecture, and by using the
Runtime Event Diagram that already
exists, you can ensure that the system
does indeed still function as expected.
Moreover, by showing the system as it
exists and works at present, the Run-
time Event Diagram will demonstrate
how the system can be modified when
a more important component must
change. By defining the system’s behav-
ior as a whole and how it is expected to
function, the Runtime Event Diagram
becomes a sort of architectural unit
test. When the system changes, the
changes can more easily be vetted to
ensure that the proper functionality is
maintained.
 The diagrams should be used in
situations when the details often
obscure the bigger picture. Their
high-level nature can be leveraged as
insight into what design patterns are
being used, or what AntiPatterns are
showing themselves. Many other uses
are possible, and when a Runtime
Event Diagram, test case specifica-
tion and use case specification fails
to capture the necessary detail, it
provides a road map that can be used
to jump directly into the code.

Leveraging Functional Tests for
Regression Testing
 Finally, to boost your ROI on your
functional testing efforts, configure a
process to run these tests automati-
cally in concert with your automated
build process. Such a process not
only functionally tests code, but also
performs regular regression testing at
the same time. Most modern develop-
ment projects involve building upon
a large existing code base. If the code
base lacks sufficient tests, the team
has no practical way to determine if
the modifications broke any existing
functionality. As a result, such code
is difficult to extend or optimize. In
contrast, developers with a regression
test suite of comprehensive function-
al tests can improve and extend code
without fear of introducing problems
that could go undetected. After all,
there is nothing like the pleasure of
being able to run a regression suite
and know that everything is still
working as expected.

JDJ.SYS-CON.com38 November 2006

t’s been over three years since the JDBC Expert
Group held its first meeting to gather requirements,
requests, and pipe dreams for the JDBC 4.0 specifi-
cation. In that meeting, we discussed a wide variety
of topics, including performance enhancements,

clarifications on the existing JDBC 3.0 specification, and
Ease of Development features. Unbelievably, everything
but the kitchen sink ended up making it into the release.
In this article, we’ll look at several key features that made
the enhancement list for JDBC 4.0, and we’ll discuss why
those features are important.
 At the time of this publication, the JDBC 4.0 specifica-
tion should be close to shipping as part of Java SE 6.0. The
key goals of the JDBC Expert Group were to align with the
most important features of the SQL 2003 specification, to
provide constructs that improve developer productivity
(sometimes called Ease of Development or EOD features),
to fine tune pooling constructs, and to improve scalability.
While many aspects of the JDBC 3.0 specification were
somewhat limited, the new additions to the JDBC 4.0
specification apply to a wider audience. Additionally, the
most common complaint about the JDBC specification is
that it did not provide enough specifics. This vagueness
often led to different implementations between JDBC
driver vendors. In addition to the wealth of new features,
JDBC 4.0 includes hundreds of fixes for bugs that have
been addressed and clarifications stated to eliminate
ambiguity among implementations.

XML Support
 One of the most useful new features in JDBC 4.0 is sup-
port for the SQL 2003 XML data type. Support for the XML
data type is also the feature that has changed the most since
the initial public draft of the JDBC 4.0 specification. This
draft introduced support for XML data types in the data-
base, Java XML bindings, and SQL/XML extensions to the
SQL grammar. Based on feedback from both the JDBC and
XML communities, the JDBC interfaces for working with
XML data have been enhanced and expanded significantly.
 Today, applications must use either JDBC driver exten-
sions or the Clob and Blob interfaces to transfer XML data to
or from the database. Using JDBC driver extensions makes
it hard to write a portable database application. Using the
Clob and Blob interfaces limits the application to working

with string representations of XML data and, in many cases,
requires vendor-specific extensions to the SQL grammar to
tell the database whether to return the data as a character or
binary representation of the XML string data.
 Now, the new JDBC data type, SQLXML, is part of the
JDBC 4.0 specification. Applications can use the getTyp-
eInfo() method to determine if their database supports a
native XML data type. For example, using getTypeInfo()
against a Microsoft SQL Server 2000 instance does not
return a result row corresponding to the SQLXML data
type, indicating that there is no native XML data type
available for that particular database. In contrast, using
getTypeInfo() against a Microsoft SQL Server 2005 instance
returns a result row, indicating that an XML data type is
available. Additionally, it returns information indicating
that the native type name is XML. From this information,
applications can create tables that contain columns of the
XML data type.
 To allow applications to populate data into XML col-
umns and retrieve data from those columns, JDBC has
been expanded to include native Java bindings for XML.
In the initial public draft, the JDBC Expert Group defined
bindings for Java strings and StAX. The thinking at the
time was that this subset of XML representations could
be used to easily construct other XML representations.
However, feedback from the community made it clear
that there are many applications today that rely on DOM
and SAX and that any JDBC XML solution must provide
support for those and other XML representations. The
expert group went back and totally reworked the SQLXML
interface definition.
 The definition of the SQLXML interface in the proposed
final draft of the JDBC 4.0 specification now includes
support for generating and retrieving a character or
binary representation of XML data as a Java String, a
character stream, or a binary stream. More importantly,
the SQLXML interface includes methods for working with
the Source and Result interfaces defined in the javax.xml.
transform package. These methods provide flexibility for
supporting any XML representation for which there is a
javax.xml.transform Source or Result implementation.
Additionally, supporting the Source and Result interfaces
allows a JDBC driver to easily become an end point of
XSLT transforms or XPath evaluations.

John Goodson, Vice President

of Product Operations, leads

the product strategy, direction,

and development efforts for

DataDirect Technologies.

For over ten years, John has

worked closely with Sun and

Microsoft on the development

and evolution of database

connectivity standards

including J2EE, JDBC, .NET,

ODBC, and ADO. His active

memberships in various stan-

dards committees, including

the JDBC Expert Group, have

helped John’s team develop

the most technically advanced

data connectivity technologies.

John holds a bachelor of

science in computer science

from Virginia Tech.

john.goodson@datadirect.com

by John Goodson and Mark Biamonte

I

XML, performance, and more

Feature

JDBC 4.0

39November 2006JDJ.SYS-CON.com

 At a minimum, the JDBC 4.0 specification requires JDBC
drivers to support the Source and Result interfaces shown in
Table 1.
 To create a Java construct that can be used to process XML
data, an application can create a SQLXML object using the
Connection.createSQLXML() method. The object that is cre-
ated does not contain any data initially. Data is added to the
object using one of the following methods:
• Calling setString()
• Using the Writer returned from setCharacterSteam()
• Using the OutputStream returned from setBinary-

Stream()
• Associating a Result with the SQLXML object using

setResult()

 Listings 1 and 2 illustrate how an application can use
these techniques to insert a row containing XML data.
The examples used in this section work on a table that
has a column named id of type INTEGER and a column
named xmlCol of type XML.
 Similarly, applications can retrieve XML data from
a SQLXML object using the getString(), getCharacter-
Steam(), getBinaryStream(), and getSource() methods.
Listing 3 illustrates how an application can query a
column of the SQLXML data type, create a SQLXML Java
binding using the getSQLXML() method on the result set,
and retrieve a StAXSource object that is used to process
the XML data.
 SQL 2003 also includes extensions to the SELECT syn-
tax that allow you to construct XML results from tabular
columns. Listing 4 shows a simple example of how to
create a SELECT statement that produces a result set con-
taining two columns: a CustId column of type integer and
a CustInfo column of type SQLXML.
 The SELECT statement uses the new SQL/XML exten-
sion XMLELEMENT to process multiple base columns
into a single XML result column. JDBC 4.0 also has been
expanded to support using database metadata methods
to determine which SQL/XML constructs are supported
on the connection. Applications can execute any sup-
ported SELECT statement with SQL/XML extensions to
produce SQLXML result columns that can be processed
using the new XML Java bindings.

Connection and Statement Pooling Enhancements
 Today, if you have a JDBC application deployed inside an
application server or Web server, there’s a good chance it
uses connection pooling, statement pooling, or a combi-
nation of both to obtain better application performance.
Pooling is great — except it’s not tunable, it’s hard to map
end users back to connections in the pool, and if a connec-
tion ever becomes invalid inside the pool, removing only
that connection from the pool is nearly impossible. JDBC 4.0
addresses all these drawbacks.

 The architecture of many Java application servers or
Web servers dictates that database interaction occurs as
a result of an incoming message, a user clicking a but-
ton in a Web browser, or through some other real-time
event. In each of these occurrences, a database connec-
tion is usually established, one or more SQL statements
are executed, results are processed, and the connection
is closed. In this type of architecture, the response time
for the application is limited by the response time of the
connection attempt. That is, connecting to a database is
one of the most performance-expensive operations that a
JDBC application can do. A connection involves multiple
network round-trips between a JDBC driver and a data-
base server to perform the following actions:
• Establish memory on behalf of the database user in the

database server
• Authenticate the user
• Negotiate details between the JDBC driver and the

database server, such as code page settings, getting the
database version, and determining the optimal database
protocol packet size

 To limit this overhead, most Java environments use
a JDBC connection pool. A connection pool manager
establishes multiple database connections at system
startup and keeps these connections available. When
an application needs to establish a connection, the pool
manager assigns one of the pre-allocated connections to
the application instead of going through the time-con-
suming process of establishing a new physical connec-
tion to the database. When the application is finished
with the connection, the connection is returned to the
pool manager’s cache of connections. In this type of envi-
ronment, the JDBC driver and the database are not aware
that the application connected and disconnected. When
a connection is established, the pool manager loans out a
connection and when a connection is closed, the loaned
connection is returned to the pool. To the JDBC driver
and to the database, the connection has been active since
the system was started.
 Connection pooling works great until there is a prob-
lem you need to investigate. When the response time of
your database queries takes minutes instead of millisec-
onds, your application server suddenly starts to run out
of memory or CPU cycles and your database appears to
be “hung.” Another possibility is that when you try to
monitor the status of your applications, you find that
“some JDBC connection” is using all the CPU and that
the facilities available to help you find the culprit are not
very good. Once a JDBC connection is established, the
tracking mechanism between the physical connection
and the application's use of the logical connection is lost.
The connection pool manager assigns physical connec-
tions in the pool to any application that meets authenti-

Mark Biamonte is Program

Manager for DataDirect’s

Connect for JDBC product. He

is responsible for defining the

technical features and future

direction of the Connect for

JDBC product. Mark has over

20 years of experience design-

ing computer hardware and

software. He has been work-

ing with Java and JDBC for over

5 years and database APIs for

over 7 years. He is currently

an active member of the JDBC

Expert Group defining the next

version of the JDBC specifica-

tion. Mark holds a master of

science in electrical engineer-

ing from Worcester Polytechnic

Institute in Worcester, Mass

and a bachelor of science in

electrical engineering from

the University of Vermont in

Burlington, Vt.

 To allow applications to populate data into XML columns
and retrieve data from those columns,

JDBC has been expanded to include native Java bindings for XML”
“

JDJ.SYS-CON.com40 November 2006

cation requirements; the pool manager does not keep any
statistics on the application requesting a connection, and
the connection itself is a black box to the application. In
other words, if you are using a monitoring tool and see that
a JDBC connection is “bogging down the system,” it’s not
possible to track down which JDBC application is actually
invoking the driver.
 As we stated earlier, connection pooling is usually
provided by the application/Web server, so a connection
request from an application is not sent to a driver, but is
instead sent to the pooling component inside the server.
For a JDBC driver to associate an application to a connec-
tion, it must be involved in the connection establishment
process, which does not happen when using JDBC 3.0-
compliant connection pool managers.
 JDBC 4.0 has added the setClientInfo() and getClientIn-
fo() methods to the connection interface to solve many
of the problems mentioned above. After connecting, an
application can call setClientInfo() to associate client-spe-
cific information to the JDBC connection object, such as
application name, site name, and department name for the
JDBC connection. The setClientInfo() request is executed
in the JDBC driver and not in the connection pool man-
ager. The JDBC driver then passes along this information
to the database server. In this way, monitoring tools can re-
trieve client information for specific database connections
from either the JDBC driver or from the database server to
help pinpoint where problems are occurring.
 Another problem we often see in today's popular JDBC
connection pool implementations is that there is no good
way for a connection pool manager to determine if a data-
base connection has become unusable. Typically, if a pool
manager detects that any single connection in the pool has
become invalid, the pool manager terminates all connec-
tions in the pool regardless of whether they’re usable. After
the pool is flushed, the pool manager re-initiates the pool
with new connections. Flushing the pool is a drastic pro-
cess that results in the potential loss of business logic, poor
performance, and, typically, irate users. Some pool manag-
ers erroneously use the Connection.isClosed() method to
check the state of a database connection, but the intention
of isClosed() is to check if a connection is open or closed,
not to determine if the connection is still usable. A new
method has been added, Connection.isValid(), to allow

pool managers to specifically request
from the driver if a connection is still usable. If a con-
nection is invalid, the pool manager can discard only the
marred connection rather than the contents of the entire
pool.
 In addition to the connection pooling mechanism previ-
ously discussed, JDBC 3.0 introduced a statement pooling
mechanism to cache prepared statements. The statement
pool manager, which can be part of the JDBC driver or part
of the application/Web server, keeps prepared SQL queries
in a cache that can be reused by applications. In the same
way that a connection pool manager keeps performance-
expensive database connections in a pool for “loan,” the
statement pool manager keeps SQL prepared queries in
a cache that can be loaned out when an application at-
tempts to use a SQL query that matches one in the pool.
 JDBC statement pooling provides performance gains
for JDBC applications that execute the same SQL state-
ments multiple times in the life of the application. Most
applications have a certain set of SQL statements that are
executed multiple times and a few SQL statements that
are executed only once or twice during the life of the ap-
plication. Unfortunately, existing JDBC statement pooling
implementations give no weight to a SQL statement that’s
executed 100 times versus one that’s executed only twice.
Either a statement goes into the pool, potentially displac-
ing another statement from the pool, or there is no pool.
JDBC 4.0 provides a more granular level of statement pool-
ing by allowing applications to provide directives to the
pool manager about whether a SQL statement should be
pooled.
 The PreparedStatement interface has been expanded
by the addition of two new methods: isPoolable() and set-
Poolable(). The isPoolable() method returns a Boolean flag
that denotes whether the SQL statement identified on the
PreparedStatement object should be pooled (by default,
a statement is poolable when it’s created). Applications
specifically can request that a statement not be pooled by
calling setPoolable(false). Using these constructs, applica-
tion architects gain more control over the performance
aspects of their JDBC applications. Queries that are reused
are pooled and provide optimal performance, and queries
that are used infrequently do not affect the pool.

National Character Set Support
 When the JDBC 1.0 specification was developed, the pri-
mary goal was to make the specification fit the Java model
of programming and make it easy to use. When the topic
of national language sets was discussed, it was decided to
postpone introducing these types into the specification be-
cause they were complex to explain, not well understood,

Feature

 Table 1 JDBC 4.0 required Source and Result types

Source Interfaces Result Interfaces
javax.xml.transform.dom.DOMSource javax.xml.transform.dom.DOMResult
javax.xml.transform.sax.SAXSource javax.xml.transform.sax.SAXResult
javax.xml.transform.stax.StAXSource javax.xml.transform.stax.StAXResult
javax.xml.transform.stream.StreamSource javax.xml.transform.stream.StreamResult

JDBC statement pooling provides performance gains for
JDBC applications that execute the same SQL statements multiple

times in the life of the application.”
“

41November 2006JDJ.SYS-CON.com

and the hope was that JDBC drivers could mask most dif-
ferences, for example, those between NCHAR and CHAR.
Besides, Java was Unicode anyway.
 It turns out that most JDBC drivers do need to know
when sending character data to a database if the type the
database server is expecting is a Unicode type (or National
Character). It also turns out that most JDBC drivers can’t
figure out what the database is expecting without expen-
sive network round-trips to the database server. JDBC pro-
vides only one type of binding using setString(), setCharac-
terStream(), and setClob(). If a SQL parameter corresponds
to an NCHAR type, the application binds the parameter
using setString(). Similarly, if the parameter corresponds to
a CHAR type, the application uses setString() also.
 To compensate for this deficiency, JDBC drivers typically
adopted one of the following three strategies:
• Always send the character data to the database server in

“safe” mode, which typically results in a performance pen-
alty when the data doesn’t match the format expected on
the database server

• Provide connection properties that must be set to cor-
respond to the types being used on the server – clearly a
problem when both types are used

• Assume all data is ANSI and can possibly fail with data
corruption if the database types are Unicode (or National
types)

 None of these options benefit application designers, so
the JDBC 4.0 specification now provides mechanisms to

denote National Type characters – (setNString(), setNChar-
acterStream(), setNClob(), and setObject()); and ANSI
characters – (setString(), setCharacterStream(), setClob(),
and setObject()).

Other New Features
 We’ve touched on only three new features of the JDBC
4.0 specification, but the specification contains over 20
new features as well as hundreds of valuable specification
clarifications. The JDBC 4.0 specification also includes
support for extended SQLException hierarchies, a new
ROWID data type, improved management of Clob and Blob
objects, an improved mechanism for installing and recog-
nizing JDBC drivers on a system, and more.
 One of the innovations removed late in the specification
process were the Ease of Development features, includ-
ing annotation support. Look for annotation support
soon after the release of Java SE 6.0. Take a good look at
the JDBC 4.0 specification at http://www.jcp.org/en/
jsr/detail?id=221 for details about the features we’ve
mentioned in this article as well as all the features we
didn’t have space to include. As you start to use JDBC 4.0,
remember that some of the new features are targeted for
JDBC pooling components usually available in an appli-
cation server or Web server while others are targeted for
JDBC drivers. Check out the components you’re using to
make sure that they support the parts of the specification
you’re interested in and start reaping the benefits of JDBC
4.0.

Listing 1: Inserting Data with a SQLXML Object – XML Data Set Using setCharacterStream()
sql = “insert into xmlTable values (?, ?)”;
PreparedStatement prepStmt = con.prepareStatement(sql);

String xmlStr = “<MyXMLData> ... </MyXMLData>”;

SQLXML sqlXML = con.createSQLXML();
Writer xmlWriter = sqlXML.setCharacterStream();

xmlWriter.write(xmlStr);
xmlWriter.close();

prepStmt.setInt(1, 7);
prepStmt.setSQLXML(2, sqlXML);
prepStmt.executeUpdate();

Listing 2: Inserting Data with a SQLXML Object – XML Data Set Using DOMResult
File xmlFile = new File(“Addresses.xml”);

// Get a DOM Document
DocumentBuilderFactory docBuilderFactory =
 DocumentBuilderFactory.newInstance();
docBuilderFactory.setNamespaceAware(true);

DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();
Document doc = docBuilder.parse(xmlFile);

sql = “insert into xmlTable values (?, ?)”;
PreparedStatement prepStmt = con.prepareStatement(sql);

sqlXML = con.createSQLXML();

DOMResult domResult = (DOMResult) sqlXML.setResult(DOMResult.class);
domResult.setNode(doc);

prepStmt.setInt(1, 9);
prepStmt.setSQLXML(2, sqlXML);
prepStmt.executeUpdate();

Listing 3: Retrieving Data with a SQLXML Object – XML Data Read Using an XMLStreamReader
String sql = “select id, xmlCol from xmlTable”;
resultSet = stmt.executeQuery(sql);
while (resultSet.next()) {

 id = resultSet.getInt(1);

 SQLXML sqlXML = resultSet.getSQLXML(2);
 StAXSource staxSource =
 (StAXSource) sqlXML.getSource(StAXSource.class);
 XMLStreamReader xmlReader = staxSource.getXMLStreamReader();

 // Process the StAX events using xmlReader
}

Listing 4: Constructing an XML Result
Select
 c.CustId,
 xmlelement(name customer,
 xmlelement(name name, c.Name),
 xmlelement(name address, c.Address)) as CustInfo
from Customers c

CustId CustInfo
1 <customer>
 <name>Woodworks</name>
 <address>Baltimore</address>
 </customer>

2 <customer>
 <name>Software Solutions</name>
 <address>Boston</address>
 </customer>
... ...

JDJ.SYS-CON.com42 November 2006

bject-oriented software engi-
neering (OOSE) without design
patterns is like cooking without
a recipe. Patterns guide us with

ingredients and step-by-step instruc-
tions for assembling the solution to a
recurring problem. In the same way we
rely on recipes in cooking, we experi-
ence patterns as repeatable, proven
solutions, and software engineering
becomes more reliable and successful.
 As in the culinary arts, where chop-
ping and cutting techniques are prereq-
uisites for mixing and flavoring dishes,
there are many design patterns for all
sort of challenges - basic, intermedi-
ate, and advanced - depending on your
needs. However, food recipes often con-
tain references to other recipes that go
well with the main dish, thus enhancing
the entire meal.
 This article will focus on exactly these
pattern relationships, combinations,
and variations. It’s all part of an emerg-
ing trend we might call “pattern-driven
software engineering.” The examples
I provide are visualized in UML and
would eventually be transformed into
code (e.g., Java). Because patterns
do not only affect the structure and
dynamics of classes and objects, this
article will conclude investigating the
role of patterns in a service-oriented
architecture (SOA).

The Concept of Patterns
 Patterns emerge as software
engineers begin to notice recurring
problems. If you design software and
you face a situation in which you ask
yourself, “Gee, I can’t be the first person
facing this problem!” - your search for
a pattern has just begun. Once you find
and apply a pattern, your solution will
not only benefit from the knowledge
gained in the past, but this pattern
might also open a door to related pat-
terns. An individual pattern works in its
described context and offers a variety
of related patterns that can improve
the quality of your solution even more.

Eventually, one design could be a start-
ing point for an entire pattern-driven
design process.
 Before we discuss the relationships
among patterns, let’s explore that culi-
nary metaphor a bit and take a look at
some individual patterns.
 I’ll describe a typical TV cooking
show to help explain software patterns
and their relationships. The goal of the
show is to demonstrate the preparation
of a specific meal. On most cooking
shows, however, we find cups and
bowls in front of the chef, with ingredi-
ents such as onions already prepared.
That’s because the expert cook doesn’t
need to illustrate the chopping of
onions in front of the TV audience; it
would be boring. Prior to the taping of
the show, the chef has probably asked
his subordinates for some quantity of
“finely chopped onions,” the same in-
gredients used in many recipes. What’s
important here is that the chef doesn’t
need to communicate the actual cut-
ting technique; he simply asks for the
well-known result, a standard cup of
chopped onions.
 Software engineers make use of such
basic patterns, too. Some of these pat-
terns, such as the General Responsibility
Assignment Software Patterns (GRASP)
(Applying ULM and Patterns by Craig
Larman), are so fundamental that many
other patterns make use of them. Basic

design patterns organize and control
communication or creation, or they
establish visibilities among objects.
Basically, in an object-oriented system,
objects communicate with each other
through messages. Therefore all these
messages (a.k.a. responsibilities) need
to be assigned by the software engineer
to build a flexible and maintainable
system. Based on that fact, object-ori-
ented software engineers constantly ask
themselves the same basic question:
“Who should talk to whom?”.

The Problem Scenario
 For the remainder of this article, I
will illustrate various approaches to
pattern usage through the scenario of
a change request to a timesheet ap-
plication, where the change has to do
with the timesheet approval process.
Figure 1 shows a typical situation for
an object-oriented designer, where
a specific business rule requires
identifying whether the timesheet is
approved or not. The question (“Are
you approved?”) and the answer
(“yes” or “no”) are determined, but the
questions remain: who should receive
and who should send the message?
 Even for very basic design situa-
tions like the one described in Figure
1, we can make use of fundamental
design patterns; for example, asking
the GRASP patterns for help.

Trends

by Jochen Krebs
Patterns In Action

O

Jochen (Joe) Krebs,

http://www.jochenkrebs.com,

is a method engineer within

the Rational Brand for IBM. He

develops content for the Rational

Unified Process, OpenUP, and

other agile software engineering

processes. Prior to his current

role he was responsible for

successful enablement of

Rational products and services

for clients in the financial sector.

Before joining IBM Rational

he worked as an instructor

and senior consultant with a

focus on project management,

requirements management,

software engineering processes,

and object-oriented technologies

using Smalltalk and Java. He

holds his MSc in computing for

commerce and industry at the

Open University.

jochen.krebs@us.ibm.com

Pattern-driven software engineering

 Figure 1 Responsibility assignment

Sender? Receiver?

Responsibility
Assignment

x:Object y:Object
1: b: = isApproved():Boolean

JDJ.SYS-CON.com44 November 2006

 In the TV cooking show, the chef is
using a fundamental pattern - chopped
onions - to assemble a more complex
pattern of his own, the meal itself. The
level of the pattern has been elevated
from a single set of techniques to a
dish that comprises other fundamental
techniques. The recipe has a name; for
example, tomato sauce. It is the chef’s
responsibility to decide how many on-
ions he uses and how he prepares them.
The problem now moves to a higher
level, from chopping onions to making
a good tomato sauce. The chef begins
applying his own pattern, the recipe,
which contains other patterns (for
sautéing, chopping parsley, etc.). The
experienced chef applies a pattern, in
a sense, as a way to present food nicely,

focusing on color, texture, and style.
 Software design patterns are not
different. In addition to the fundamen-
tal GRASP patterns, engineers make
use of more elevated patterns, such as
Gang of Four (GoF) (Design Patterns by
Gamma, Johnson, Helm and Vlissides)
or architectural patterns. Now that most
software engineers graduating from uni-
versities are grounded in OO principles,
the software development industry has
begun to raise the level of pattern adop-
tion from the level of problem-solving
techniques to problem-prevention
techniques. I will use the Design Pat-
terns -Reusable Objects (from the Gang
of Four) as a design pattern catalog to
demonstrate the pattern relationships
and use the IBM Rational Software Ar-
chitect (RSA) pattern catalog to illustrate
the examples.
 Let’s get back to our initial scenario
illustrated in Figure 1, in which we plan
to build a timesheet application with
a focus on an approval process. The
designer needs to identify whether a
timesheet is approved or not. In this
case, it seems almost enough to simply
add an attribute called is Approved to
the Timesheet object, which contains
one of the boolean values, true or false.
The problem with this solution is, how-
ever, that the attributes of the object can
change, and depending on the content
of the attribute we would need to de-
termine the type of message that will be
fired. If we want to add another option
- for example, Submitted - the boolean
attribute, which allows two possible val-
ues true or false, does not accommodate

this design approach anymore. With
the introduction of the Submitted state
the original design (built for two values)
would break and the entire business
logic would require us to reevaluate our
initial design.
 Later, I will demonstrate how smooth
the transition can be from a two-states
design to a three-states design, when
patterns are applied. As illustrated in
Figure 2, our new design approach
would violate two fundamental design
patterns, Expert and Polymorphism
(according to Larman, op. cit.) and
would unnecessarily couple one object
with the business logic that belongs to
another object.
 The boolean value approach would
not only violate fundamental design
patterns, it would also increase the
maintenance burden for software
engineers because the design for the
Timesheet object could easily break
and the entire object would need to be
retested with every change.
 Translating the UML design from the
code below would generate a Java struc-
ture like this example, violating Expert
and Polymorphism.

....

 if (b == true)

 {

 ts.doSomething();

 }

 if (b == false)

 {

 ts.doSomethingElse();

 }

 One Solution: The State Pattern
 The GoF pattern catalog offers a pos-
sible solution for our design challenge.
The pattern is called State.
 First, we verify that the pattern meets
our needs; then, we read the intend,
application, and consequences sections
of the pattern. Because the pattern says
that it “Allows an object to alter its be-
havior when its internal state changes.
The object will appear to change its
class [GoF],” we go ahead and apply this
pattern to our problem.
 One of the benefits of applying the
State pattern is that it can resolve the if-
statement situation difficulty shown in
Figure 3 by isolating the various states.
The UML state-machine notation helps
us depict and investigate the various

Trends

 Figure 2 A UML example of violating the Expert and Polymorphism patterns

:Object ts:Timesheet
1: b: = isApproved():Boolean

3: [b == true] doSomething()

5: [b == false] doSomethingElse()

 Figure 3 UML state-machine diagram for timesheet (two states)

NotApproved

enter

Approved

approve

reject

 Figure 4 State pattern and participating class-

es within the RSA pattern explorer

45November 2006JDJ.SYS-CON.com

states. Initially our timesheet was fairly
simple and we isolated two states out of
our existing structure, Approved and Not
Approved, as shown in Figure 3.
 Instead of asking the object which
value is nested in an attribute (in our
case is Approved) and make a decision
based on that (which violate the prin-
ciple of polymorphism) we instead tell
the object what to do and simply send
the message to it and let the Timesheet
object deal with the event. What we
would like to design is some way to send
a message, as shown below, where ts is a
Timesheet object. This is a new responsi-
bility assignment for timesheet (Java)

....

ts.approve();

....

 After we isolate the various states,
remove the if-construct from the
Timesheet object, and assign the three
responsibilities (enter, approve, and
reject), we then want to apply the State
pattern to our solution. Using the RSA
pattern explorer we navigate to the State
pattern (See Figure 4), which shows us
the participating classes in the pattern.
 In order to get an overview of the
structure of the State pattern, the pat-
tern explorer provides us the layout
shown in Figure 5.
 The cookie-cutter solution for the
State pattern needs to be adjusted to
accommodate our application’s specific
needs. After dragging the pattern from
the pattern explorer directly into our
workspace, we can assign the partici-
pating classes from our application-
specific class model. Figure 6 shows
the Timesheet as a context object, the
Java interface ITimesheetState for the
State and both concrete states from our
timesheet application (Approved and
Not Approved).
 The dynamics of this pattern are
shown in the code below, using Java.
After the message approve() has been
sent to the Timesheet object, it takes
the message and delegates it to its state
and provides a pointer back to itself (the
this-parameter). Below is the message
delegation from the context to the State
Object.

....

state.approve(this);

....

 After the message approve(this)
has been sent, the state which at
runtime is located in the State object
will handle the event (which is truly
polymorphic). For example, the Not
Approved state would implement the
approve(ITimesheetState state) message.
Below is the concrete state method
implementation – Not Approved.

public void approve(Timesheet ts)

{

 ITimesheetState newState = new

 ApprovedState();

 ts.setState(newState);

}|

 To support the polymorphic ap-
proach, we need to assign the approve
responsibility also to the Approved
state, as shown below, even though we
will not do anything in this particular
situation. The code below shows the
Concrete state method implementation
– Approved.

public void approve(Timesheet ts)

{

 // do nothing|

}

 Now that the State pattern[GoF] has
been applied, let’s see what happens
in our one-pattern design if a require-
ments change occurs: for example,
stakeholders need to be able to submit
their timesheet after the time has been
entered, and request approval. The fol-
lowing state machine diagram in Figure
7 shows two new states, Entered and
Submitted, which replaced the previous

state Not Approved to accommodate
this requirement change.
 The UML Design Class diagram in
Figure 8 depicts the changes caused
by the new requirement to the class
model. Even though new state classes
and messages have been introduced
and one state has been removed, the
changes are still very manageable. The
most important point to be made is that
the Timesheet has not been changed at
all. It still keeps passing all the mes-
sages it receives to its actual state.
That is a tremendous improvement
to our if-else construct from the Java
example,violating Expert and Polymor-
phism, because the area of concern
from a testing perspective has shifted
away from the Timesheet object to its
states.

Pattern-Driven Development
 In the previous section, I illustrated
a design problem, applied a common
solution (the State pattern) to it, and
pointed out the advantages of the design
using the pattern (maintainability and
flexibility). In a pattern-driven solution,
a designer will not only apply a pattern
when a problem occurrs, but will drive

 Figure 5 State pattern structure within the RSA pattern explorer

ContextC
StateI

– state <<interface>>

1

ConcreteStateC

 Figure 6 Applied state pattern in RSA

C

C

I

<<Pattern Instance>>

State

Pattern Parameters

State

Context [1] :

State [1] :

ConcreteState [1..*] :

Timesheet

ITimesheetState

Approved NotApproved

JDJ.SYS-CON.com46 November 2006

the entire design by using patterns. This
approach is slightly different, because it
assumes that the designer works actively
with design pattern catalogs and uses
the relationships between those pat-
terns. The patterns within a catalog are
usually grouped according to a chosen
template. The GoF pattern template,
for example, has Name and Classifica-
tion, Intent, Also Known As, Motivation,
Applicability, Structure, Participants, Col-
laborations, Consequences, Implementa-

tion, Sample Code, Known Uses and, last
but not least, Related Patterns.
 The Related patterns section
within the pattern template contains
important clues to other patterns that
might be applicable in the context of
the object. For example, according to
the pattern catalog, the State pat-
tern is often related to Flyweight and
Singleton[GoF]. This information must
trigger a new set of questions to the
software engineer - for example, “Are

there any parts of my solution that
could also benefit from the use of the
Flyweight or the Singleton pattern?”
- and cause the engineer to examine
the existing approach.
 Our solution using the State pat-
tern currently has one drawback. If
our timesheet system will handle,
say, 5,000 timesheets in the approved
state, we would also carry 5,000
instances of the Approved state. Also,
with every state change, we would
create a new instance of a new state
and the Java garbage collector would
need to collect the old state objects.
This might not be very critical for our
timesheet application, but in other
scenarios this could be very expensive
in terms of resources. Figure 9 shows
just a small number of timesheets and
associated states that would multiply
thousands of times in our application,
as it is thus far designed.
 In our timesheet example, the states
“approved, submitted. and entered”
are good candidates for Flyweight ob-
jects because there is no need to add
any additional attributes to one of the
states to distinguish these instances.
With the Flyweight pattern, we are
actually able to improve the State pat-
tern solution even further, as shown in
Figure 10.
 Our timesheet application now con-
tains only three different state instances
at any given moment, which increases
maintainability and performance.
 However, applying the Flyweight
[GoF] pattern raises a new challenge
for our designer. Instead of creat-
ing a new instance of a particular
state object or carrying the flyweight
objects around as parameters, we
would like to achieve visibility to this
one instance of state in that particular
situation. The Singleton [GoF] pattern
serves exactly this purpose. We could
either implement each state as a
Singleton, or create a factory of states
which creates and manages the states.
The latter method would increase
maintainability even more through
separation of concerns.
 In pattern-driven development, the
destination may be the origin for new
patterns. For example, the State pattern
often harmonizes with the Flyweight
and Singleton patterns. However,
Flyweight and Singleton have further
associations to even more patterns, and

Trends

 Figure 7 UML state machine for timesheet (more states)

Entered

enter

Submitted Approvedsubmit approved [by manager]

reject [by manager]

 Figure 8 Partial UML design class diagram (timesheet and new states)

ITimesheetStateI

– state

<<state>>

1 TimesheetC
C

C

C

enter (timesheet, hours, date)
approve (timesheet)
submit (timesheet)

SubmittedCEnteredC ApprovedC

 Figure 9 Object model prior to Flyweight pattern

A: Timesheet B: Timesheet C: Timesheet D: Timesheet

a: Approved b: Approved c: Approved d: Entered

 Figure 10 Object model after applying the Flyweight pattern

A: Timesheet B: Timesheet C: Timesheet D: Timesheet

a: Approved c: Submitted d: Entered

47November 2006JDJ.SYS-CON.com

so on. For simplicity, I have limited my illustration of these
pattern relationships to the GoF catalog; the Also Known As
section of the pattern template opens the door to other cata-
logs as well.

Pattern-Driven Development in Service-Oriented Architectures
 In service-oriented architectures (SOA), there are services,
providers, and consumers, just as there are responsibilities,
receivers, and senders in object-oriented architectures. The
difference is that the application-centric design approach,
(e.g. the timesheet application) is elevated to the orchestra-
tion of services aligning the IT system with, for example, the
business processes. So far, our design for the timesheet ap-
plication has been driven by technology and a requirements
change. To include the timesheet application in a SOA,
services must be exposed so that human and non-human
interfaces can be consumed.
 In SOA design, the isolated view of the timesheet applica-
tion would be replaced by a view of how the services of the
timesheet application harmonize with other services from
other applications. Depending on business requirements,
the timesheet application could be seen in light of an orga-
nizational payroll process or in combination with a cost-
breakdown-structure for product management. Exposing or
modifying existing services or creating new services becomes
a critical task for the enterprise and application architect. A
more flexible and maintainable system built with patterns is
therefore a critical element for a successful SOA.
 Earlier in this article, I showed how patterns promote
the application of additional related patterns, even across
catalogs. We also saw that patterns exist in various forms, from
helping with design decisions on an object level to patterns
on an application level (i.e., assigning responsibilities vs. GoF
patterns). The pattern-driven approach helps provide flexible
and maintainable services in an SOA, and the SOA itself can
drive and stimulate the pattern-driven approach. Business
modeling patterns as well as architectural/network patterns
motivated through an SOA can drive pattern-driven devel-
opment top-down, whereas the pattern-driven application
design prepares a successful SOA bottom-up.

Conclusion
 Finding a matching pattern for a problem not only presents
a solution to a problem, but also means in many cases the
beginning of a new search and further evaluation of related
patterns. This type of search/discovery/exploration activ-
ity should be familiar to you if you’ve ever used an Internet
search engine to explore a topic you only vaguely understand.
You often start with terms you’re not sure about, but as you
see more accepted terms and areas of knowledge unfold in
your result set(s), you gain insight into the “patterns” of think-
ing and solutions that exist. Soon, you are able to enhance
your own queries, eventually expanding your original lines of
thought.
 When properly documented and cataloged, patterns pro-
vide a common roadmap, encourage engineers to investigate
the problem space, and, more importantly, allow us to apply
a set of proven solutions rather than only one particular solu-
tion. I have used a basic enhancement request to illustrate
the impact of change to a pattern-driven solution for a system

in maintenance mode. Following an iterative-incremental
process model, projects face very similar situations during
construction, and we can easily map the benefits of pattern-
driven development to incremental improvements in the
project.
 The Rational Software Architect (RSA) provides capabilities
to support a pattern-driven engineering process by starting
with common design patterns (for example GoF), or by creat-
ing its own pattern catalog. Publishing a pattern catalog with
RSA and sharing the library of patterns on an enterprise level
increases adoption rate which results in more reliable and
flexible IT design. The ability to react to and adapt to organi-
zational change is a fundamental strategy for a SOA.

References
• Gamma, E., Johnson, R., Helm, R., and Vlissides, J.M.

(1995). Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

• Larman, Craig. (2004). Applying UML and Patterns - An
Introduction to Object-Oriented Analysis and Design and
Iterative Development 3rd Edition. Prentice Hall.

• Alexander, C. (1979). A Timeless Way of Building. Oxford
University Press.

• Cooper, J.W. (2001). Java Design Patterns -- A Tutorial.
Addison-Wesley.

• Alpert,S., Brown, K., and Woolf, B. (1998). The Design
Patterns - Smalltalk Companion. Addison-Wesley.

JDJ.SYS-CON.com48 November 2006

ed Nelson, inventor of, among other
things, hypertext, once lamented
that software development today is
at the same evolutionary stage fi lm

making was at 100 years ago. Back in the
1900s, when the technology of fi lm produc-
tion was in its earliest stages, the camera-
man was the person in charge because he
was the one who understood the technol-
ogy and could make it function correctly.
The audience’s sheer fascination with the
magic of fi lms was enough to captivate
and hold their attention while the silent
and blurred subjects grinned and gawked
directly into the lens. Much has changed in
the last hundred years though, and movie
directors are now the ones in charge of
making a fi lm. It is they who decide every
camera angle, every pan and zoom, every
focus switch, and every light level in order
to create the fi nished product. Their goal is
to captivate the viewer, hold their attention,
and suspend disbelief for 90 minutes or
more. Cinema is a branch of the arts whose
end product is thing of aesthetic quality.
 There are striking similarities between cin-
ema and GUI software, the most obvious of
which is the fact that both interact with their
users through a screen. It was developers at
the Xerox Palo Alto Research Center (PARC)
in the 1970s who realized that the eye is the
highest bandwidth connection to the brain,
and to interact with the user in the most
effi cient and natural way required using a
terminal as more than just a way of receiving
and displaying formatted text output. As a
result of this epiphany, the fi rst WYSIWYG
editor was created and the concept of the
GUI was born. Having the user interact with
the information via scroll bars, push buttons,
pop-up menus, check boxes, and so forth
were all conceived 30 years ago. Each time
a new whiz bang PC operating system is
released or a software package created that
will “revolutionize the way we work,” I am
always disappointed to peel back the hype
and fi nd that most of the effort occurred
under the hood, leaving the front end largely
unchanged with just a token rearranging of
controls. Yesterday’s dinner is re-served with
fresh salad dressing and a quick 30 seconds
in the microwave to make it smell fresh.

 The problem is a deep one and can be
traced back to the original Xerox develop-
ers who, although they were undeniably
creative geniuses who shaped most of
modern computing, also created the legacy
that now holds us back. Their task back then
was to create applications that supported
laser printers; they needed a way for the user
to see what the fi nished output would be
before wasting toner and paper. WYSIWYG
is more aptly an implementation of the
acronym WYSIWYP or “what you see is
what you print.” For example, the scrollbar
was designed to allow the user to deal with
having their available viewing area smaller
than the size of the underlying page, not as a

way of navigating through large lists of back-
end data. All of our computing metaphors
– such as copy and paste, applications on a
desktop, folders with fi les, trash cans, and so
forth – come from a paper-based view of the
world. Ted Nelson writes that “like the fi sh
that is unaware of water, computer users
are blind to the 2D tyranny of paper.” The
problem occurs because everything we do
in GUI software is predicated on the fact that
we’re using the computer as though it were a
page of information.
 What needs to be done then to break
out of the goldfi sh bowl we’re all currently
swimming around in? We need to create
applications that push the boundaries of
software toward cinema, where the user ex-
perience is all that matters and our job isn’t
to be latter-day cameramen just arranging
precanned widgets and controls designed
to help some laser printer engineers.
 Part of the problem lies in our psyche,
who we are, and where we came from.
In Hackers and Painters by Paul Graham
(http://www.paulgraham.com/hp.html),

he draws a parallel between the numerous
people involved in creating a piece of art.
One is the painter who has the inspiration,
the talent, and the creative ability to produce
the fi nished piece. To do this he has the
knowledge of how to apply paints in the
right way, the right combination, and the
right technique to produce a work of art. The
other person is the engineer at the paint fac-
tory. He has the knowledge of how chemicals
can be mixed together to produce different
products; paints that dry on the canvas and
not in the tin; different colors, mediums, and
so forth. The two disciplines are clearly dif-
ferent and neither the artist nor the engineer
would be able to apply each other’s trade.
When the paint factory hires new recruits,
they approach the chemical engineering
department for graduates, and when the art
gallery needs new material, they visit the art
department. Software should be the same,
where for a GUI application the people
required understand how to communicate
with users through a computer screen and
how to convey information. These people
are artists, not engineers. They are people
who understand how to direct a movie, not
those whose only skill is loading fi lm in a
camera and switching it on and off.
 When this is understood it can be used
to good effect, for example in the computer
gaming industry where the production
process has more in common with a movie
studio than a traditional software house.
Likewise, the plethora of special effects
that occur in fi lms, not to mention the raw
technology underpinning CGI cartoon mov-
ies, makes the boundary between the two
disciplines even more blurred. Computer
games companies hire, and put in charge of
production, creative talent and artists, while
the engineer’s job is relegated to cutting
the code, pointing the camera, and making
the canvas come to life in the image of the
design team’s ideas and vision.
 What we need to do for desktop software
is to learn from the games programmers, to
recognize that the screen can do more than
rehash a 30-year old paper presentation
metaphor to the users, and see if we can
inject more art, and less science, into the
applications we produce.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

The Two-Dimensional
Legacy of GUIs

T

Joe Winchester is

a software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

The Two-Dimensional
Legacy of GUIs

The terms on everyone’s lips this year include “AJAX,” “Web 2.0” and

“Rich Internet Applications.” All of these themes play an integral role at

AjaxWorld. So, anyone involved with business-critical web applications

that recognize the importance of the user experience needs to attend

this unique, timely conference – especially the web designers and

developers building those experiences, and those who manage them.

BEING HELD MARCH 19 - 21, 2007!
We are interested in receiving original speaking proposals for this

event from i-Technology professionals. Speakers will be chosen

from the co-existing worlds of both commercial software and open

source. Delegates will be interested in learning about a wide range

of RIA topics that can help them achieve business value.

NEW YORK CITYNEW YORK CITY

ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV -
CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYN-
CHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPTCRIPT

ND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRO-
NOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT ANDND
XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS ND XML ASYNCHRONOUS

Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...

REGISTER TODAY AND $AVE!

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED

SYS-CON Events is proud to announce the
AjaxWorld East Conference 2007!

The world-beating Conference program will provide developers and IT managers alike

with comprehensive information and insight into the biggest paradigm shift in website design,

development, and deployment since the invention of the World Wide Web itself a decade ago.

www.AjaxWorldExpo.com

T H E R O O S E V E L T H O T E L L O C A T E D A T M A D I S O N & 4 5 t h

JDJ.SYS-CON.com50 November 2006

 challenge facing many organizations is how
to quickly and effectively react to frequent
changes in business requirements, whilst
improving productivity and reducing costs. To
achieve this, you need a flexible infrastructure

that can meet the demands of a changing marketplace
and seize emerging opportunities. To address this chal-
lenge, Service Oriented Architecture (SOA) promotes an
architectural approach that replaces rigid proprietary
systems with heterogeneous, “loosely-coupled” services.
The Service Component Architecture (SCA), along with
Service Data Objects (SDO), makes this architectural
concept a reality and provides the programming model
to build SOA solutions for agile businesses.
 SCA is a powerful and simple business level program-
ming model which extends and complements prior ap-
proaches for implementing services based solutions. SCA
defines how services can be described, assembled, and
deployed in a meta-data driven fashion, independent of
an implementation language and a deployment platform.
The approach is based on the idea that each business
function consists of one or more components brought
together into a composite application. These, in turn, are
composed into a network of services that create specific
business solutions.
 This article describes some of the key values of SCA by
modeling an SOA based solution for a fictitious company
called MostMortgage. We shall assume a simple business
process in which an applicant signs up for a loan and
provides his or her identity information and loan require-
ments. MostMortgage evaluates the new applicant based
on their credit approval and searches for an appropriate
mortgage rate.
 By using the SCA programing model, MostMortgage’s
developer can build a solution for this problem quickly

and effectively, separating the business logic from
technology concerns and enabling re-use of existing ap-
plications. In this case, there is already a well understood
credit appliction that can be re-used (CreditCheck); and
MostMortgage has a subscription to a Web service that
searches for the best loan rates (FindRates).
 The solution developer completes the following
steps:
 1) Define the business logic for LoanApproval and

 AccountVerification;
 2) Define references for each component (this

 identifies what other services, if any, the
 component is dependent on);

 3) Define the services provided by each component,
 if any;

 4) Assemble the components and choose the binding
 to be used.

 The MostMortgage solution (as shown in Figure 1) is
then ready for deployment.
 Components can be implemented in any language
supported by an SCA runtime, including BPEL, Java,
Ruby, and C++. Outside of any program logic, these
components can be assembled or “wired” into a com-
position using any appropriate binding, such as WS-*
or JMS.
 Let’s update the MostMortgage application by making
one technology domain change and one business domain
change.
 First, we improve the security of the calls to the Cred-
itCheck component, which happens to run in a remote
data center. The MostMortgage company developer
need not be concerned about these new infrastructure
requirements. SCA separates infrastructure capabilities
from business logic and allows the security require-

by Andrew Borley, Simon Laws,
and Haleh Mahbod

A

An overview of SCA and SDO

Feature

Andrew Borley is an IBMer

enjoying life working on the

Apache Tuscany project. He’s

helping to define the Service

Component Architecture

(SCA) specification and is a

committer on Apache Tuscany,

developing implementations of

SCA and Service Data Objects.

borley@uk.ibm.com

Simon Laws is with IBM and is

working with the open source

Apache and PHP communities

to build Java, C++ and PHP

implementations of the Service

Component Architecture (SCA)

and Service Data Object (SDO)

specifications.

simon_laws@uk.ibm.com

The Service Component Architecture (SCA), along with
Service Data Objects (SDO) …provides the programming

model to build SOA solutions for agile businesses”
“

SOASOARealReal

51November 2006JDJ.SYS-CON.com

ments to be defined as policies during assembly.
The resulting flexibility enables IT infrastructure
policies to change at anytime without requiring a
re-code.
 Secondly, it is decided to introduce a bespoke
rate optimization layer in front of the FindRate
Web service (see Figure 2). MostMortgage can
add value to the white box FindRate service by
combining a mortgage account with in-house fi-
nancial products. Here, the developer is involved,
but he is able to reuse his previous work directly
in a controlled and modular way by simply ex-
tending the assembly to include the new RateOp-
timizer component.
 It is important not to forget the complexity
introduced by handling data in such a hetero-
geneous network of services. A technology
called Service Data Objects (SDO) addresses
this problem. SDO offers a format-neutral API
that provides a uniform way to access data,
regardless of how it is physically stored. By
using SDO, the solution developer will not
pollute a business application with code to
handle diverse choices of data access, such as
JDBC Result Sets, JCA records, DOM, JAXB,
and EJB entities.
 SDO supports a disconnected style of data
access and can record a summary based on any
changes made to data objects. SDO’s ability to
maintain a summary of the changes made al-
lows data transfers to include only the portion
of data that has changed, therefore improving
environments where bandwidth is a constraint.
The change summary information can be used
to resolve data access conflicts and concurrency
issues.
 SDO supplies a powerful yet simple program-
ming model for data with first class support
for XML and the ability to automatically persist
data via the use of a Data Access Service (DAS).
A DAS allows the data to be stored or retrieved
from a relational database or another repository,
and helps to link the SDO models to enterprise
data storage.
 SCA and SDO provide technologies that
simplify the development of SOA solutions.
SCA and SDO technologies work well together
and independently. More detailed information
about SCA and SDO will be available in future
articles.
 The importance of these technologies has led
many vendors who experienced customer pain
points to collaborate and develop specifications
for SCA and SDO, and crystallize best practices
that have been utilized for the past few years.
More information about the Open SOA collabora-
tion and its many participating vendors can be
found at www.osoa.org.
 You can try out Java and C++ implementations
of the SCA and SDO technologies by visiting the
Apache Tuscany open source project at incubator.
apache.org/tuscany . Tuscany provides a simple

“on ramp” for developers who want to create ap-
plications using a service-oriented approach. As
an early implementer of SCA and SDO specifi-
cations, the Tuscany project is able to provide
timely feedback on the specification to the Open
SOA collaboration. Other implementations of this
technology are also beginning to appear, for ex-
ample, the PHP PECL SDO project at http://pecl.
php.net/package/sca_sdo.
 In summary, today’s organizations must be
able to quickly react to change. SCA promotes
flexible and reusable solutions by encouraging
componentization and by clearly separating
business logic from underlying technology
concerns. SCA and SDO independently increase
developer productivity by shielding them from
infrastructure complexity and the necessity to
develop deep infrastructure technology skills.
SCA and SDO together provide IT with a flexible
model for building SOA based solutions and,
more importantly, for effectively and efficiently
handling change.

 Figure 1 Loosely-coupled components in which business and technology domains are clearly separate

Technology Domain

Business Domain

Credit Composite

CreditCheck
Component

Loan Composite

LoanApproval
Component

Binding can be:
-Web Service
-SCA
-JCA
-JMS
-…

Account
Verification
Component

Implementation can be:
-Java
-BPEL
-JavaScript
-Composite
-Spring
-…

FindRate Web Service

BPEL

Reference Service

Reference
Service

Java

C++

Haleh Mahbod is a program

director with IBM, managing

the team contributing to the

Apache Tuscany as well as SOA

for PHP open source.

She has extensive development

experience with database

technologies and integration

servers.

mahbod@us.ibm.com

 Figure 2 Updating the application: Binding policy and an additional component

Business Domain

Credit Composite

CreditCheck
Component

Loan Composite

LoanApproval
Component

Account
Verification
Component

FindRate Web Service

Reference Service

Reference
Service

Rate
Optimizer

Technology Domain Binding here describes a web service transport
Policy attached to this binding requires that

The message sender is authenticated
The message contents remain confidential

New component

New policy

JDJ.SYS-CON.com52 November 2006

Labs

n event-driven architecture
(EDA) reflects the real world
in which businesses operate.
The real world is constantly

changing, chaotic, and unpredict-
able. An EDA enables organizations
to make sense out of all the events
occurring within their business, and
to detect anomalous business situa-
tions by drawing together a number
of indirectly related or independent
events. Furthermore, EDA builds deci-
sion-making capabilities directly into
business processes by using analytical
insights to drive decisions. EDA offers
organizations the ability to track events
in real time, thus gaining an early
awareness of issues, improving produc-
tivity, and reducing manual interven-
tion and errors.
 Event-driven architecture is not a
new application pattern; applications
have been supporting events for years.
What’s new is that vendors are now
enhancing software infrastructure
products and application frameworks to
support events without complex custom
coding. This article reviews one of the
latest products to do so – Oracle EDA
Suite.

The Need For Event-Driven Architecture
 Today, EDA is gaining popularity,
driven by the need to solve the following
business issues:
• Organizations are suffering from

an overabundance of data result-
ing from the “double whammy” of
rising transaction volumes and the
increasing speed at which data is
produced. A typical business may
produce millions of events on a
daily basis. Financial services firms
often process up to 150,000 external
events each second, a number that
is forecast to increase to 5 million
within three years.

• Customers have come to expect
dramatically faster customer service

response times – pushing organiza-
tions to react and respond faster
than ever before – and in many
cases customers demand proactive
communication and resolution. At
the same time, customer interac-
tion channels are continuing to
increase, requiring near real-time
coordination.

• Over the years, businesses have
created increasingly complex,
heterogeneous IT environments.
With Internet-linked, distributed
systems, along with the rise in ser-
vice-oriented computer systems,
the complexity of systems has
increased significantly, as chains
of services distributed across mul-
tiple boundaries interlink in ways
that will make administrators pine
for the days of linear, procedural
codes that ran on a single machine.
Understanding what is happening
at any given moment within such
multifaceted applications is dif-
ficult, and this complexity will only
increase.

• Regulations such as Sarbanes-Oxley
require up-to-the minute reporting
and end-to-end process visibility.

 Organizations must sense and
respond to events across the extended
enterprise rather than carrying out
predetermined processes. Organiza-
tions that incorporate event-driven
styles into their enterprise archi-
tecture can respond more quickly
to changing business conditions,
whereas current infrastructures for
processing and managing events re-
quire complex and expensive software
engineering.

EDA or SOA? Why Another Architecture?
 Developers using a service-oriented
architecture (SOA)-based approach
build an application by assembling
“services,” or software components
that define reusable business func-
tions. SOA is based on a conventional
request/reply mechanism. A service
consumer invokes a service provider by
sending a message asking for some ac-
tion or data, and then has to wait until
the completion of the operation on the
provider side.
 Unlike the request/reply approach
of SOA, where callers must explicitly re-
quest information, EDA allows systems
to respond dynamically as events oc-

Reviewed by
Mark Simpson

and Mark Waite
Oracle EDA Suite

Mark Simpson has spent

more than 12 years

working with independent

software vendors and

systems integrators since

graduating from Birmingham

University, UK, with a

BSC honors degree in

Mathematics. Mark joined

GW in 1998 he is now a

Senior Solutions Architect

responsible for strategic

customers.

Supporting events without complex custom coding

A

 Figure 1 ESB Control Console for managing message routing

53November 2006JDJ.SYS-CON.com

cur. In an EDA, event producers publish
events, and event consumers subscribe
to receive these events as they happen.
Moreover, the generation of an event
is not dependent on the availability of
a service to process that event; events
therefore must be stored to support
such instances when a subscriber is not
available.
 Apart from its support for parallel
asynchronous flows of data – in which
information is transmitted without any
anticipation of an immediate reply, and
in which there is no need for a continu-
ous connection between systems – event
handling exhibits a number of other
characteristics that serve to distinguish it
from service processing.
 Events require not only one-to-one
exchanges, but also the additional
capability for one-to-many and many-
to-many communications. In addition,
event handling allows the publisher
and the subscriber to interact without
knowing anything about each other.
The relationship between the two sys-
tems is purely in terms of the informa-
tion sent and received. In contrast, in-
teraction between service components
generally involves linear bidirectional
request/response communications
between a “client” and “server” service,
with the flow controlled by the initiator.

EDA in the Real World
 Real-world examples of event-driven
processes include demand-driven
manufacturing and dynamic pricing.
In demand-driven manufacturing, pro-
duction is initiated upon the receipt of
a customer order, rather than building
to a quota determined from past sales.
This reduces inventory and enables
each order to be customized: for ex-

ample, Dell Inc. can manufacture to
order within a 24-hour cycle.
 In a dynamic airline pricing system,
each new booking “event” triggers a
new pricing calculation for the next
buyer. Dynamic pricing maximizes
revenue by charging more if demand is
strong and less if demand is weak.
 Solving use cases such as these
requires going beyond traditional busi-
ness process automation, to enable
rapid response to changing conditions.
This requires the use of both service
and event processing, which are com-
patible and reliant on each other. Using
events to wire together business pro-
cesses enables more decision-making
to be transferred from man to machine.
 This interaction between EDA and
SOA is two-fold. The occurrence of an
event can trigger the invocation of one
or many services. Those services may
perform simple functions, or entire busi-
ness processes. Secondly, a service may
generate an event. The event may signify
a problem or impending problem, an
opportunity, a threshold, or a deviation.
Upon generation, the event is imme-
diately disseminated to all interested
parties (human or automated). The in-
terested parties evaluate the event, and
take action if necessary. The event-driv-
en action may include the invocation
of a service, the triggering of a business
process, and/or further publication or
syndication of information.
 SOA delivers software functions
as loosely linked services that can be
plugged, unplugged, or combined to
form new applications. EDA enables
organizations to respond instantly
to any relevant event. It is clear that
organizations need both SOA and EDA
within their enterprise architectures.

EDA is not the successor to SOA; it is
its sibling. Neither is it new: simple
event-driven processing has been in
common use for at least ten years with
message-oriented middleware. How-
ever, one of the main advances in the
past few years has been the emergence
of higher-level programming tools and
paradigms that make EDA implemen-
tation much less daunting.
 The remainder of this article will fo-
cus on the requirements of an EDA and
how Oracle EDA Suite supports those
requirements.

Requirements of an EDA Solution
 Successfully implementing an event-
driven architecture requires the following
components:
• Data and Event Collection

Infrastructure: A real-time scalable
infrastructure is required for event
handling. Data is most valuable when
it is fresh and can be acted upon
immediately; stale data that cannot be
used to anticipate events before they
happen is of little value. The platform
must provide both the scalability and
reliability required to handle the vast
amounts of real-time data that will be
generated from EDA applications.

• Event Filtering: Not all events are of
equal significance. It is important to
be able to filter events – especially in
high-volume cases such as RFID – to
ensure networks and applications are
not overwhelmed.

• Complex Event Processing (CEP):
CEP deals with the task of processing
multiple streams of simple events with
the goal of identifying the meaning-
ful events within those streams. CEP
helps discover complex, inferred
events by analyzing other events.

• Messaging Backbone: A messaging
backbone that handles standards-
based, multiprotocol messaging is
required to support heterogeneous
IT environments in which events are
generated from a variety of sources
and technologies, such as enterprise
applications, databases, and RFID
sensors.

• Visualization and Actionable Alerts:
Users need to be able to visualize the
events that are occurring within their
businesses. They need to be able to
quickly determine the nature of the
problem, drill down into operational
data, and take action directly.

 Figure 2 Heterogeneous events correlated for use in Oracle BAM

Mark Waite is the co-

founder of Griffiths Waite, a

UK consultancy specializing

in the delivery of enterprise

architectures and compos-

ite applications. He has

20 years IT experience and

holds a BSC honors degree

in Computing Information

Systems. He is currently

responsible for the strategic

direction of the company’s

enterprise applications

practice.

JDJ.SYS-CON.com54 November 2006

 Oracle EDA Suite
 The Oracle EDA Suite consists of a
subset of Oracle’s middleware platform
– Oracle Fusion Middleware – that
allows customers to identify, analyze,
and respond to business events in real
time. Oracle EDA Suite can be imple-
mented on its own or in conjunction
with the companion Oracle SOA (Ser-
vice-Oriented Architecture) Suite. Both
share several overlapping components,
including Oracle Enterprise Service
Bus.
 Oracle EDA Suite comprises the fol-
lowing components: Oracle Enterprise
Messaging Service, Oracle Enterprise
Service Bus, Oracle Business Rules,
Oracle Business Activity Monitoring,
and Oracle Sensor Edge Server. These
components are described in more
detail below.

Oracle Enterprise Messaging Service
 Oracle Enterprise Messaging Service
(OEMS) provides a standard messaging
platform for EDA. OEMS is built on Java
2 Enterprise Edition (J2EE) standards
such as the Java Message Service (JMS)
and the J2EE Connector Architecture
(JCA). For organizations that want to
integrate their existing messaging tech-
nology with the Oracle platform, the
OEMS JCA Connector implementation
supports WebSphere MQ, TIBCO En-
terprise JMS, and SonicMQ integration.
PL/SQL and C APIs are also provided to
allow integration with non-Java appli-

cations. In addition, Oracle Enterprise
Messaging Service also leverages the
security and high-availability features
of Oracle Database and Oracle Real Ap-
plication Clusters (RAC).

Oracle Enterprise Service Bus
 Oracle Enterprise Service Bus (ESB)
fully supports all the capabilities you
would expect from a leading enterprise
service bus: data transformation and
document enrichment using XSLT
or XQuery transformation, business
rules, system cross-references, and
domain value mapping. Oracle ESB
provides connectivity by leverag-
ing Oracle Adapters, which provide
standards-based access to virtually any
data source. Oracle ESB also supports
content-based routing and content
filtering. A novel feature is support for
multiple protocols in the messaging
bus, including JMS, SOAP, JCA, WSIF,
JDBC, HTTP, and FTP. This means
that organizations can get enterprise
service bus capabilities – messaging,
routing, and transformations – running
on their choice of underlying protocol.
 In contrast to Oracle BPEL Process
Manager, which orchestrates long-
running stateful business processes,
Oracle ESB delivers high-performance
messaging in support of both stateless
and stateful service orchestration.
Oracle ESB can capture the inter-
mediate steps of a business process,
allowing critical usage patterns to be

identified and integrated into decision
support systems in real time. Usage
patterns can be identified to stream-
line business processes, or even head
off problems before they cause irrevo-
cable damage.
 Oracle ESB combines event-driven
and service-oriented approaches to
simplify integration across heteroge-
neous platforms. It acts as an inter-
mediary layer to enable communica-
tion between different application
processes. A consumer or an event can
trigger a service deployed onto Oracle
ESB. It supports synchronous and
asynchronous data flows, facilitating
interactions between one or many
stakeholders (one-to-one or many-to-
many communications). Oracle ESB
provides all the capabilities required
for both service- and event-oriented
architectures. (Figure 1 shows the ESB
Control Console, which is used to man-
age messaging.)

Oracle Business Rules
 Oracle Business Rules enables busi-
ness analysts to easily define, update,
and manage key decisions and poli-
cies governing business processes and
applications.
 Oracle Business Rules consists of
the Rule Author tool, a Rules engine,
and a Rules SDK. The Rule Author tool
presents a simple interface for declar-
ing rules that can be used by both pro-
grammers and business analysts. Rule
Author generates the Oracle Rules
language in a repository for use by the
Rules engine. This language provides
integration with Java programs, Web
services, and XML documents. The
Rules engine is a fast and efficient JSR-
94 compliant RETE-based engine writ-
ten in Java. The Rules SDK provides
a rules-editing interface that allows
applications to generate custom rules.
The SDK is attractive for applications
that define policies via their own
special graphical interfaces. You can
develop applications in Oracle BPEL
Process Manager – part of Oracle SOA
Suite – and capture business policies
that are part of business processes by
using the Rules engine. In this way,
changes to business policies can be
made without touching the busi-
ness processes themselves. The Rules
engine also supports integration with
third-party engines such as iLog.

Labs

 Figure 3 Oracle BAM dashboard supporting financial services scenario

55November 2006JDJ.SYS-CON.com

Oracle Business Activity Monitoring
 Oracle Business Activity Monitoring
(BAM) enables companies to define and
monitor events and event patterns that
occur throughout their organization.
Oracle BAM captures information from
custom and packaged applications; busi-
ness processes and workflows; databases;
messaging systems such as JMS, AQ, MQ;
and other systems to collect data in real
time. Oracle BAM is also fully integrated
with Oracle BPEL Process Manager to
collect process information in real time.
(Figure 2 shows the diverse nature of
events supported by Oracle BAM.)
 The Oracle BAM architecture delivers
requested critical information within
seconds of an event or change in status.
Because the primary source of data
is messages, Oracle BAM can update
reports and generate alerts at speeds that
traditional architectures can’t match. Ora-
cle BAM can accept tens of thousands of
updates per second into a memory-based
persistent cache that is at the center of
the Oracle BAM architecture.
 Users can view dashboards and reports
showing critical business measures and
key performance indicators (KPIs) that
update in real time, and can then drill
down into the detailed information un-
derlying them. Dashboards automatically
update as new events occur. Only events
that effect changes to the dashboard
display are sent across the network,
and a connection is left open from the
dashboard to the Oracle BAM server to
receive these updates, removing the need
for time-consuming polling and reducing
server load.
 Oracle BAM allows business users to
be alerted when business conditions are
out of band. Alerts can be delivered on a
variety of devices. Alerts are fully action-
able, and can invoke external programs
or Web services to change the underlying
business operation in real time. Users
can take any necessary corrective action
on monitored events – for example,
launching a business process in Oracle
BPEL Process Manager – right from the
dashboard.

Oracle Sensor Edge Server
 Oracle Sensor Edge Server provides
the link to the physical world, enabling
organizations to collect and manage data
from sensors placed strategically around
the enterprise, and observe what is hap-
pening in the world outside of IT. Oracle

Sensor Edge Server captures data from
any sensors, RFID equipment, or other
external devices and publishes it to en-
terprise applications, while also relaying
instructions to response devices such as
light stacks, printers, and other mate-
rial handling equipment. The captured
data is normalized to ensure consistency
between sensors, and then filtered to
prevent “event flooding” by reducing the
amount of data that needs to be handled
by the network and applications. The
data can then be routed to the appropri-
ate applications through Oracle ESB, or
visualized in the Oracle BAM dashboard.

Business Scenario:
Financial Services Company
 To fully assess the capabilities of
Oracle EDA Suite, it’s helpful to model
a real-world scenario that captures a
typical business process. This scenario is
a high-volume case within the increas-
ingly competitive market of financial
services loan brokering. The organization
is an intermediate broker that takes loan
requests from multiple sources and sells
the requests to suitable lenders with var-
ied and flexible commission structures.
It is a start-up company that operates
nationally, with aggressive growth plans
within its domestic U.K. market and in
Europe, the U.S., and Asia. Being new to
the industry, with tight reins on budget,
the company must closely monitor the
cost of acquiring leads in relation to
the revenue generated by those leads.
With limited funds for marketing, the
company must utilize all resources to full
capacity.
 The company used Oracle EDA Suite as
the foundation of its brokering system to
quickly gain a foothold in the market and
achieve its goal of being the first broker
to offer customers a deal, thus removing

them from the market. By using Oracle
Enterprise Messaging Service (OEMS),
the company receives credit leads from
a large number of diverse sources. The
initial lead generation was done through
a number of Websites that each target
a different segment of the market. The
Websites produce XML messages that are
transported to the brokering system via
an in-memory JMS implementation.
 OEMS validates and authenticates
the data before placing the messages on
the Oracle Enterprise Service Bus (ESB)
to securely route the loan applications
in different formats to the most suitable
lenders, dependent on rules configured
in Oracle Business Rules. Together, OEMS
and Oracle ESB not only provide seam-
less integration to lenders who use other
messaging systems, such as WebSphere
or Sonic ESB, but also allow persistence
of application data while manual under-
writing is performed by lenders who do
not have automated systems in place.
 Oracle ESB and OEMS give the broker
the necessary transaction support to han-
dle exceptions with third-party systems,
and Oracle BAM offers underwriters
visibility into the state of any application.
Oracle BAM gives the broker a complete
view of the state of operations through
role-based dashboards that combine
real-time lead information with current
workload data and data on the current
and historical performance of lenders to
ensure that the business rules used by
Oracle ESB to route applications are ac-
curate and efficient, and the best service
is provided to customers and lenders.
(Figure 3 shows an Oracle BAM dash-
board used to monitor lead generation.)
 To support leads from nonautomated
or partially automated sources, OEMS
can receive bulk files of turndowns from
other lenders in the form of e-mails or

 Table 1 Design Time

JDJ.SYS-CON.com56 November 2006
OFFER SUBJECT TO CHANGE WITHOUT NOTICE

JDJ is the world’s premier independent, vendor-neutral print resource
for the ever-expanding international community of Internet

technology professionals who use Java.

The World’s Leading Java Resource
Is Just a >Click< Away!

www.JDJ.SYS-CON.com
or 1-888-303-5282

6999$

Subscription Price Includes
FREE JDJ Digital Edition!

ONE YEAR
12 ISSUES

ONLY

direct communications. In addition,
individually sourced messages from
partner systems are accepted by OEMS.
This receipt of heterogeneous mes-
sages from diverse brokers gives the
start-up company a great advantage:
it can rapidly scale up in lead volume,
and quickly sign up a large number of
partner brokers and lenders, meeting
their technology requirements rather
than enforcing an integration protocol.
 The complex event processing (CEP)
within Oracle BAM correlates the appli-
cations received from partners with mes-
sages from elsewhere in the business that
record events such as SLA warnings from
low-performing lenders, opportunity
thresholds with efficient lenders, or ac-
tivity triggered from market analysis. The
CEP engine allows the broker to work
with flexible commission models, lead-
ing to preferred lending rates and faster
acceptance of leads. The broker is antici-
pating making even more investment in
the Oracle CEP engine when it becomes
a standalone product with a business
front end: the marketing department
will utilize the tool to filter, correlate, and
aggregate application events to identify
cross-sell and up-sell opportunities such
as upgrading the loan or transporting
events to partners focused on offering
mobile phone contracts or car loans.
 One of the main sources of leads for
the company is links, sponsored by Web-
site search engines that present qualified
traffic. Each day the broker goes through
an auction process to buy search engine
keywords such as “Low APR” or “Debt
Consolidation.” Search engine marketing
is a very effective and efficient way of in-
creasing revenue for the broker: it is more
adaptable, scalable, and responsive than
traditional advertising, giving the broker
the ability to turn it off, up, or down in
real time.
 However, in the consumer credit
business, brokers run the risk of a lot of
browsing traffic but few buyers. Because
the cost of keywords is click-based, it is
essential that the volume and benefit

of leads from this channel be closely
monitored. Oracle BAM analyzes the
volume and cost effectiveness of these
clicks, tying the clicks back to account
performance to determine the value of
the advertisements. Thresholds are set
up to cancel bad keywords immediately
and transfer the marketing budget to
other keywords.
 Oracle BAM correlates the events
streamed from these search engine clicks
with the performance of the generated
leads, enabling the broker to optimize
its search engine marketing campaigns
in real time, and giving it confidence to
invest valuable budget in this lucrative
but risky method of lead generation. The
advertising can be as responsive to the
brokers’ events as required: when Oracle
BAM shows that current performance
is low, the search engine marketing can
be scaled up, resulting in an immediate
response.
 The scalability and comprehensive
support of messaging systems within
Oracle EDA Suite has given this start-up
broker the infrastructure required to
achieve its goals of being the number
one lead generator in its territory and
expanding globally in its vertical market.
Just as important, it allows the broker to
handle more than just loan applications,
and become the central hub as a data
broker across many markets without any
technology barriers.

Conclusion
 Oracle EDA Suite has several key
benefits. First, all the products within
the family have been engineered to work
together, which provides out-of-the-box
integration benefits. Implementation
times are faster, which in turn means
quicker time-to-business benefit.
Companies do not have to spend time
setting the environment up, but can get
straight down to business, concentrating
on satisfying their business objectives
instead of sorting out the plumbing.
 Second, Oracle Fusion Middleware,
because it is based on industry stan-

dards, is highly interoperable. Products
in the family can work with third-party
middleware products and databases, as
well as across heterogeneous business
applications. This is particularly impor-
tant to a consultancy company that has
to work with what organizations already
own – applications, technology, and
infrastructure from any vendor. With
Oracle EDA Suite, there’s no need for
the client to rip out and replace what
is currently there and already working.
It can leverage its previous technology
investments, thus significantly reducing
the cost and speed of implementation
while also minimizing disruption and
ultimately business risk.
 Oracle EDA Suite and Oracle SOA
Suite are both components of Oracle’s
next generation of service-oriented
architecture that defines how events and
services are linked together to deliver
a flexible and responsive IT infrastruc-
ture. We agree that event processing
is an emerging requirement that will
increasingly find its way into more and
more enterprise applications. Without
the interoperability with applications
provided by event-driven SOA, an EDA
solution will be compromised, as the
solution can only be as good as the
events generated from the organization’s
business applications and Web services.
 Oracle EDA Suite provides organiza-
tions with all the key building blocks
they need to event-enable their IT infra-
structure, and we strongly recommend
the suite to organizations considering
such a solution. However, Oracle’s most
compelling proposition is the ability to
deploy Oracle EDA Suite in conjunc-
tion with Oracle SOA Suite to satisfy
both event-driven and service-oriented
infrastructure requirements in a single
integrated platform.

Rating
 We rated Oracle EDA Suite on the
criteria (see Table 1), with assess-
ment from architects, developers, and
administrators.

Labs

It is clear that organizations need both SOA and EDA within their
enterprise architectures. EDA is not the successor to SOA; it is its sibling.
Neither is it new: simple event-driven processing has been in common

use for at least ten years with message-oriented middleware”

“

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

JDJ is the world’s premier independent, vendor-neutral print resource
for the ever-expanding international community of Internet

technology professionals who use Java.

The World’s Leading Java Resource
Is Just a >Click< Away!

www.JDJ.SYS-CON.com
or 1-888-303-5282

6999$

Subscription Price Includes
FREE JDJ Digital Edition!

ONE YEAR
12 ISSUES

ONLY

JDJ.SYS-CON.com58 November 2006

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7

Labs

n terms of unit testing and
code compliance, Jtest is a
real heavyweight in the arena.
For those who haven’t come

across Jtest before, it’s an applica-
tion that will analyze your Java
application code for you. At present
Jtest has 700 built-in rules and 100
security rules and it will autocorrect
250 of those rules for you. It provides
Parasoft SOAtest hooks for testing
of SOA/Web services and Web apps.
The reporting engine is also built-in
so once tests are run, you can view
and print results via a Web browser.
There are some new features such as
improved J2EE testing and the Bug
Detective, which I will cover later in
this review.
 The front end is built on the
Eclipse framework so it will be famil-
iar to some of you. Test projects are
created the same way you would cre-
ate a project in Eclipse. The wizards
are easy to use and I got up and run-
ning in a short time. You can also buy
Jtest as a plug-in for Eclipse (versions
3.0 – 3.2) and IBM Rational Applica-
tion Developer. I would strongly
suggest playing with the example
projects for a short time before using
your own code, just to get used to
how the application operates.

Basic Testing
 Once a project is set up, testing
the code is a fairly simple matter.
Don’t try and test every Java file in
one huge test. Jtest is quite memory
intensive; my Pentium4 1GB laptop
decided to die as the machine
couldn’t handle all the process-
ing. Parasoft recommends 2GB of
memory to use Jtest properly. Select-
ing a couple of files or a package at
a time usually works best. There are
built-in configurations to test certain
aspects or specific texts written in

the past (there’s a configuration
based on Joshua Bloch’s “Effective
Java” series, for example). You can
configure Jtest to run as many or
as few of the rules as you want. A
good starting point is to check for
standardization guidelines. Jtest will
also create JUnit test cases in JUnit 3
format and now includes execution
of JUnit 4 test cases. In one click you
can standardize your code, write the
test cases and execute them, then fi-
nally read the report to see how it all
went. There is a tabbed review of the
tests run and their outcomes; high-

lighted problems are easily found
– it’s a matter of double-clicking the
error. From there the QuickFix tool
can correct most problems that are
found.

Team Working
 If you work in a team, it’s pretty
safe to assume that you would be
using some form of source code
control. Jtest can work with CVS,
Subversion, ClearCase, and StarTeam.
Jtest has improved the team-working
aspect and can monitor commits and
check-ins from defined team mem-
bers. This is handy for developers in
different countries; let’s assume there
is a team manager and a small group
of developers. The manager can
now arrive at work in the morning,
launch Jtest, and review all the latest
CVS-committed code by the team
members. From the CVS logs, Jtest
can tell you what has been changed

Reviewed by
Jason BellParasoft Jtest 8.0

Jason Bell is founder of

Aerleasing, a B2B auction

site for the airline industry.

He has been involved in

numerous business

intelligence companies and

start ups and is based in

Northern Ireland.

jasonbell@sys-con.com

A real heavyweight

I

 Figure 1

101 E. Huntington Drive

Monrovia, CA 91016

Web: www.parasoft.com

E-mail: info@parasoft.com

Phone: 888-305-0041

Parasoft Corporation

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7

JDJ.SYS-CON.com60 November 2006

Labs

and how the tests have performed.
Any corrections can be noted via
Jtest and the team members will be
notified when they start their working
day. In theory, all the developers have
tested the code and all the developers
have notes via the CVS log on any cor-
rections or complications that need
addressing. This does assume that all
team members are using Jtest. For a
large corporation with many devel-
opers, this is a serious benefit. Over
time, you can see how the code qual-
ity and test coverage has performed.

J2EE Testing
 Jtest supports Struts, Spring,
and Hibernate projects and also
the standard J2EE EJB/JSP and serv-
let specs. These items can also
go through the same rigorous
standards testing as all other types
of source code. Some of the code

convention rules have been designed
for the likes of Struts and Hibernate
applications.

BugDetective
 Testing applications prior to execu-
tion is all very well but the majority of
bugs only surface when running the
application. We can run our own test
harnesses but these usually scratch
the surface of what actually needs
testing. In Jtest 8 there is a new feature
– BugDetective, a new static analysis
technology that simulates execution
to automatically identify real execu-
tion paths – often paths that span
multiple methods, classes, and/or
packages – that will lead to runtime
bugs such as NullPointerExceptions,
resource leaks, SQL injections, and
other security vulnerabilities. This is
helpful in terms of database access
applications as it’s difficult to establish

what the problems are going to be. It
also means that GUI applications can
be tested properly. During my testing,
no matter what I threw in, in terms of
bad coding (NullPointerExceptions,
not closing open I/O streams, etc.),
the BugDetective managed the whole
thing with flying colors.

Jtest Tracer
 Bug Detective has one more feature
up its sleeve: the ability to write
JUnit test cases on the fly while your
program is running. In the example
source, there is a basic GUI applica-
tion with a LIFO and FIFO stack. While
the program is being run and the user
enters some test data Jtest is putting
together a test case in the order in
which it was run. It’s an achievement
that should not be left on the side. It
may be a new feature but this brings
Jtest into a class of its own.

Conclusion
 Jtest has matured with age and is
getting like a fine wine now. There are
facets that I discover every day that
make me open my eyes and go, “Wow!”
It’s a large complicated product, but for
a large team it’s essential. This product
is not for everyone and not every devel-
oper has the cash for the license fee. I’d
love to see Parasoft do a stripped-down
community version of Jtest, even if it
was a stripped-down version of the
coding rules and tests. Figure 2

 Jtest supports Struts, Spring, and Hibernate projects
and also the standard J2EE EJB/JSP and servlet specs”“

Operating System
• Windows: Windows 2000, XP, or 2003

• Linux: Red Hat 9.0, Fedora Core 1-3 or higher,
 Red Hat E.L. 2,3

• Solaris: Solaris 9 or 10

Hardware
• Intel Pentium III 1.0 GHZ or higher
 recommended

• 512MB RAM minimum; 2GB RAM
 recommended

• Sun Microsystems JRE 1.3 or higher

System Requirements

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

AjaxWorld East Conference 2007 www.ajaxworldexpo.com 201-802-3022 49

 Altova www.altova.com 978-816-1600 4

 Backbase www.backbase.com/jsf 866-800-8996 21

 Business Objects www.businessobjects.com/devxi/misunderstood 11

 Cynergy www.cynergysystems.com 31

 IBM ibm.com/takebackcontrol/flexible 8-9

 ICEsoft Technologies www.icesoft.com 877-263-3822 25

 Infragistics www.infragistics.com/jsf 800-231-8588 13

 Instantiations www.instantiations.com/rcpdeveloper/resources/casestudy-bea.pdf 32-33

 InterSystems www.intersystems.com/jalapeno2p 617-621-0600 7

 IT Solutions Guide www.itsolutions.sys-con.com 888-303-5282 61

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 57

 Laszlo www.openlaszlo.org 43

 Northwoods Software Corp. www.nwoods.com 800-434-9820 47

 OPNET Technologies, Inc. www.opnet.com/pinpoint 240-497-3000 15

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 Cover IV

 Quest Software www.quest.com/hero 949-754-8000 Cover II

 Software FX www.softwarefx.com 800-392-4278 Cover III

 SYS-CON Website www.sys-con.com 888-303-5282 59

 TIBCO Software Inc. http://developer.tibco.com/ 800-420-8450 17

JDJ.SYS-CON.com62 November 2006

ur new effort to improve and
change the Java Community
Process through JSR 306 is still
young; however, developers and

all those interested have already started to
provide valuable feedback and share their
opinions generously. One such place where
opinions were expressed early was the poll
on JCP change that the java.net site put
up (http://today.java.net/pub/pq/123).
“Improving involvement of individuals” was
the top pick, closely followed by “Optimizing
duration of JSRs.” Also “Easing migration of
existing technologies into standards” got a
good number of votes. Acknowledging the
comments provided by some of the voters
in the poll, it serves us to look at the process
of joining the JCP, making the expert group
discussions more visible, and allowing
members and non-members alike to partici-
pate in these. One commentator states that
the JCP should look closely at various open
source projects and accept some as stan-
dards. Artima.com reported on JSR 306 and
readers there commented on the openness
and transparency of discussions. The Java
Posse took notice of the JSR as well, asking
questions and requesting more information
about the item on allowing non-Java imple-
mentations of some of the specs.
 Joining the JCP as an individual is
evidently possible, as proven by the 700 or
so individual members out of the total mem-
bership number of 1100, but admittedly it
is not a turnkey effort. When indeed the JCP
first started in December 1998, it was aimed
at enabling corporations and institutions to
come together over the standardization of
Java technology. The membership agree-
ment might seem lengthy to some; it is
because it needs to capture all the IP aspects
due to the JCP’s mandate that JSRs deliver
a spec but also two pieces of software (the
reference implementation and a technology
compatibility kit). This makes the member-
ship agreement complex to a degree that
individuals are not used to dealing with. The
Website (JCP.org) can play a role here. In

parallel to JSR 306 my team will be working
to improve the information provided on the
site about the membership process.
 Openness and the transparency of expert
group discussions and other related com-
munications at the JCP are topics that are fre-
quently raised and they are very valid ones.
From a developer’s point of view, it’s difficult
to understand why public access is not
granted on Java specification efforts that the
developer is interested in. It is also difficult to
explain! In earlier versions of the JCP, the first
draft review, then known as the Community
Review, was restricted to the JCP member-
ship. Meanwhile we made all draft reviews
public and rightly so. Nothing scary hap-
pened. Since JCP 2.5 the spec lead and expert
group have had considerable freedom over
how they conduct their work. Several spec
leads have taken that freedom to run their
JSRs in a very open manner with Doug Lea’s
JSR 166 often as the prime example. Again
nothing scary happened. Many external
standards organizations and many JSRs have
a desire to work together (OSGi, OMG with
CORBA, OMA and various Java ME–related
JSRs are some of the examples). On previous
occasions, when we looked at this, the solu-
tions always seemed complex. Now, in JSR
306, it appears we may be able to build such

liaison relationships and provide that much
sought-after transparency with the same edit
to the JSPA, the membership agreement.
 The accessibility of expert group discus-
sions has, of course, a direct relationship to
the perception of involvement as experi-
enced by members and by potential new
members. While JSR 306 will bow over to
the various legalities and process regula-
tions that may be at play, involvement also
has a strong usability aspect. This is an area
where the Website can play a role. Since JCP
2.6, spec leads have had the ability to post
whatever updates they want to share (notes,
working drafts) with the community as a
whole. These are the so-called Community
Update pages for each JSR. How do you
become aware of these pages? One option
is to track your favorite JSRs and RSS feeds
through Website features that enable users to
do just that.
 One other thing the process-change
JSR sets out to explore and implement is
allowing for non-Java implementations of
specifications created by some of the JSRs.
In EC talk, these have been labeled as “Hy-
brid JSRs.” Sometimes our nicknames are a
tad more fanciful. There is something called
“Purple JSRs” but that’ a different story. By
“non-Java” we mean anything that is written
and runs entirely outside the Java environ-
ment. It could be written in C, in Ruby, in
COBOL, or Prolog for that matter. The point
is that there are situations in which it makes
sense to enable the JCP to specify APIs that
can be implemented in a Java application
and in other architectures. Web services
interoperability can be one context, Java
language features clearly not. “Hybrid” then
describes a JSR that allows both: it still must
do all the known Java work and may then
also allow the gathered IP to be implement-
ed in a different world than Java.
 As always my expert group and I are very
interested in your views, keep them coming.
You can send your comments to me directly
(onno@jcp.org) or to the expert group (jsr-
306-comments@jcp.org).

JSR Watch

Onno Kluyt

JSR 306 Gets Noticed,
Draws Valuable Feedback

O

Onno Kluyt is the

director of the

JCP Program at

Sun Microsystems

and Chair of

the JCP.

onno@jcp.org

Improving the JCP

��

��

��

��

�������
������������������
�����������������
�������������

������� ��

����������������
��������������

������������������
��������������
�������������

����� ��

��������������
�����������
�������������

�������������������

������� ��

��������������
������������

������
�����������������

��������

����������

����������������
���������������
���������������

�����������
�����������������

����� ��

��������
�����������
�������������

���������

��

